CS 341: ALGORITHMS

Lecture 20: intractability II – complexity class NP

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
THIS TIME

• Finishing TSP reductions
• Complexity class \textbf{NP}
 • Oracles, certificates, polytime verification algorithms
RECALL

- So far we know
 - TSP-Dec \leq_T^p TSP-Optimal Value
 - TSP-Dec \leq_T^p TSP-Optimization
- In progress
 - TSP-Optimal Value \leq_T^p TSP-Dec

Travelling Salesperson Problems

<table>
<thead>
<tr>
<th>Problem 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Optimization</td>
</tr>
<tr>
<td>Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.</td>
</tr>
<tr>
<td>Find: A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 7.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Optimal Value</td>
</tr>
<tr>
<td>Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.</td>
</tr>
<tr>
<td>Find: The minimum T such that there exists a hamiltonian cycle H in G with $w(H) = T$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 7.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Decision</td>
</tr>
<tr>
<td>Instance: A graph G, edge weights $w : E \rightarrow \mathbb{Z}^+$, and a target T.</td>
</tr>
<tr>
<td>Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$?</td>
</tr>
</tbody>
</table>
What’s the size of the input $I = (G, w)$?

Size(I) = Size(G) + Size(w)

So, suppose G is represented as an array of adjacency lists (one list for each vertex), with each list containing edges to neighbouring vertices, and an edge is represented by a weight and the name of the target vertex.

Array of empty lists for all vertices v

Bits to store weight of the edge (storing $w(e)$ takes $\log w(e) + 1$ bits)

Bits to store the name of the target vertex (in $1..|V|$)

Let’s relate this to runtime... what’s the runtime?
TSP-Optimal Value $\leq \frac{T}{T'}$ TSP-Dec

Let's assume $O(1)$ time for operations on weights. Technically not needed to show polytime, but simplifies.

Algorithm: TSP-OptimalValue-Solver(G, w)

\begin{align*}
\text{external} & \quad TSP-Dec-Solver \\
hi & \leftarrow \sum_{e \in E} w(e) \quad 0(|E|) \\
lo & \leftarrow 0 \quad O(1) \\
\text{if not} & \quad TSP-Dec-Solver(G, w, hi) \quad \text{then return} \quad (\infty) \\
\text{while} & \quad hi > lo \\
& \left\{ \\
& \begin{aligned}
& \text{mid} \leftarrow \left\lfloor \frac{hi + lo}{2} \right\rfloor \\
& \text{if} & \quad TSP-Dec-Solver(G, w, mid) \quad \text{then} \quad hi \leftarrow mid \\
& \text{else} & \quad lo \leftarrow mid + 1 \\
& \end{aligned}
\end{align*}

\text{return} \quad (hi)

iterations: $O(\log(hi - lo))$

= $\log \sum_{e \in E} w(e)$

$O(1)$

Runtime $T(I) \in O(|E| + \log \sum_{e \in E} w(e))$

$0(1)$ for the oracle
COMPARING $T(I)$ AND $\text{Size}(I)$

- $T(I) \in O(|E| + \log \sum_{e \in E} w(e))$
- $\text{Size}(I) = |V| + \sum_{e \in E} (\log w(e) + 1) + \log|V| + 1$
 - $= |V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} (\log|V| + 1)$
 - $= |V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} (\log|V|) + |E|$

- Want to show $T(I) \in O(\text{Size}(I)^c)$ for some constant c (we show $c=1$)

$$O(|E| + \log \sum_{e \in E} w(e)) \subseteq O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V| + |E|)$$

$$\iff O(\log \sum_{e \in E} w(e)) \subseteq O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V|)$$

How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?
COMPARING $T(I)$ AND Size(I)

• How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

• $\sum_{e \in E} (\log w(e) + 1) = (\log w(e_1) + 1) + (\log w(e_2) + 1) + \cdots + \left(\log \left(w(e_{|E|}) \right) + 1 \right)$

• Can we combine these terms into one log using $\log x + \log y = \log xy$?

• $\sum_{e \in E} (\log w(e) + 1) = (\log w(e_1) + \log 2) + + \cdots + \left(\log \left(w(e_{|E|}) \right) + \log 2 \right)$

• $\sum_{e \in E} (\log w(e) + 1) = \log 2w(e_1) 2w(e_2) \cdots 2w(e_{|E|}) = \log \prod_{e \in E} 2w(e)$

• So how to compare $\log \prod_{e \in E} 2w(e)$ and $\log \sum_{e \in E} w(e)$?

• All $w(e)$ are positive integers, so $\prod_{e \in E} 2w(e) \geq \sum_{e \in E} w(e)$

• Since log is increasing on \mathbb{Z}^+, $\log \prod_{e \in E} 2w(e) \geq \log \sum_{e \in E} w(e)$
COMPARING $T(I)$ AND $\text{Size}(I)$

• We in fact show $T(I) \in O(\text{Size}(I))$

\[
O(\log \sum_{e \in E} w(e)) \subseteq \, O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log |V|)
\]

How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

We just saw $\sum_{e \in E} (\log w(e) + 1) = \log \prod_{e \in E} 2w(e) \geq \log \sum_{e \in E} w(e)$

So $T(I) \in O(\text{Size}(I)^c)$ where $c = 1$

So this reduction has runtime that is polynomial in the input size!
Need to prove:
TSP-OptimalValue-Solver(G,w)
returns the weight W
of the shortest Hamiltonian Cycle (HC) in G

Sketch: We return ∞ iff there is no HC.
Key loop invariant: $W \in [lo, hi]$.
So, at termination when $hi = lo$, we return exactly $hi = W$.

So TSP-OptimalValue-Solver is polytime... But is it a correct reduction from TSP-Optimal Value to TSP-Dec?
We have therefore shown:

TSP-Optimal Value is **polytime**, reducible to **TSP-Dec**

So, if an $O(1)$ implementation of **TSP-Dec-Solver** exists, then we have a **polytime** implementation of **TSP-Optimal-Value-Solver**!

In fact, **TSP-OptimalValue-Solver** remains **polytime** even if the implementation of the **oracle** runs in **polytime** instead of $O(1)$! (bonus slides)

Algorithm: TSP-OptimalValue-Solver

```plaintext
Algorithm: TSP-OptimalValue-Solver(G, w)

external TSP-Dec-Solver

hi ← $\sum_{e \in E} w(e)$

lo ← 0

if not TSP-Dec-Solver(G, w, hi) then return (\infty)

while hi > lo

    mid ← $\frac{hi + lo}{2}$

    do

        if TSP-Dec-Solver(G, w, mid)
            then hi ← mid
        else lo ← mid + 1

    return (hi)
```

So, TSP-OptimalValue-Solver is **polytime**, and is a **correct** reduction.
PROVING REDUCTIONS CORRECT

• **In more complex reductions** where we **transform the input** before calling the oracle, we will need a **more complex proof**:

 • (A) If there is a(n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and

 • (B) Our transformation doesn’t introduce new solutions that are **not** present in the original input

 • (i.e., if we find a solution in the transformed input, there was a corresponding solution in the original input)

More on this later...
Input Size Cheat Sheet

<table>
<thead>
<tr>
<th>Input I</th>
<th>Perfectly fine choices of $\text{Size}(I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>int x</td>
<td>1 or $\lceil \log(x) \rceil + 1$ (can simplify to $\log(x) + 1$ or $\log x$)</td>
</tr>
<tr>
<td>Graph (V,E)</td>
<td>$</td>
</tr>
<tr>
<td>$A[1..n]$ of int</td>
<td>n or $\sum_i (\log(A[i]) + 1)$</td>
</tr>
<tr>
<td>$n \times n$ matrix m</td>
<td>n^2 or $\sum_{i,j} (\log(m_{ij}) + 1)$</td>
</tr>
</tbody>
</table>

Examples of BAD choices of $\text{Size}(I)$

<table>
<thead>
<tr>
<th>Input I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>int x</td>
<td>x</td>
</tr>
<tr>
<td>Graph (V,E)</td>
<td>$2^{</td>
</tr>
<tr>
<td>$A[1..n]$ of int</td>
<td>2^n or $\sum_i A[i]$</td>
</tr>
</tbody>
</table>

Exponentially larger than optimal representation!

Pick any expression that makes your analysis easy

Pseudo-polynomial ~ no exponentiation of non-constant terms

Technically any pseudo-polynomial combination of these terms is fine. For example, the following is fine: $(|E|^{100} + |V|^2) \cdot \sum_{e \in E} (\log(w(e)) + 1)$
• So far we know
 • TSP-Dec \leq^T_P TSP-Optimal Value
 • TSP-Dec \leq^T_P TSP-Optimization
 • TSP-Optimal Value \leq^T_P TSP-Dec
• Let’s show
 • TSP-Optimization \leq^T_P TSP-Dec
WHAT ABOUT REDUCING TSP-OPTIMIZATION TO TSP-DEC?

Problem 7.5

TSP-Optimization
- **Instance:** A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.
- **Find:** A Hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.

Need to return the actual minimum Hamiltonian Cycle!

Problem 7.7

TSP-Decision
- **Instance:** A graph G, edge weights $w : E \rightarrow \mathbb{Z}^+$, and a target T.
- **Question:** Does there exist a Hamiltonian cycle H in G with $w(H) \leq T$?

Given only a single bit of information per call to the oracle

We already know how to get the weight T^ of the minimum HC...*

Idea: Use T^ along with calls to the oracle to somehow figure out which edges are involved in the minimum HC?*
TSP-Optimization \(\leq_T P \) TSP-Dec

Algorithm: TSP-Optimization-Solver \((G = (V, E), w)\) external TSP-OptimalValue-Solver, TSP-Dec-Solver

\[T^* \leftarrow \text{TSP-OptimalValue-Solver}(G, w) \]

if \(T^* = \infty \) then return (“no hamiltonian cycle exists”)

\[w_0 \leftarrow w \]
\[H \leftarrow \emptyset \]

for all \(e \in E \)

\[
\begin{cases}
 w_0[e] &\leftarrow \infty \\
 \text{if not} &\quad \text{TSP-Dec-Solver}(G, w_0, T^*) \\
 \text{then} &\quad \begin{cases}
 w_0[e] &\leftarrow w[e] \\
 H &\leftarrow H \cup \{e\}
 \end{cases}
\end{cases}
\]

return \((H)\)

Correctness Loop invariant: there exists a HC of weight \(T^* \) in \(w_0 \)

By the end of the loop, \(H \) contains all finite edges in \(w_0 \)

So some HC \(C \) of weight \(T^* \) is contained in \(H \)

To remove any dependence on this “other oracle,” simply replace this call with the reduction code we showed.

Already know this call is poly-time reducible to TSP-Dec!

If removing edge \(e \) removes every Hamiltonian cycle of minimum weight then \(e \) is part of every minimum Hamiltonian cycle, and we add it to \(H \) (and add it back into the graph).

At the end, the graph contains precisely the edges that are needed to produce a minimum HC.
At the end of the algorithm, there is a Hamiltonian Cycle C of optimal weight T^* contained in H.

If H is precisely C, then we are done. Suppose not to obtain a contradiction.

In this case, there are some other edges in H as well.

Let e be one such edge.

Consider the iteration when e was processed. Note e was not removed in this iteration!

Doing so would remove all Hamiltonian Cycles of weight T^*, including C.

This means the edge must be part of C—contradiction!
TSP-Optimization \leq_T^P TSP-Dec

Algorithm: TSP-Optimization-Solver($G = (V, E), w$) returns T^*
- external TSP-OptimalValue-Solver, TSP-Dec-Solver
- $T^* \leftarrow$ TSP-OptimalValue-Solver(G, w)
- if $T^* = \infty$ then return ("no hamiltonian cycle exists")
- $w_0 \leftarrow w$
- $H \leftarrow \emptyset$
- for all $e \in E$
 - do $\{ w_0[e] \leftarrow \infty$
 - if not TSP-Dec-Solver(G, w_0, T^*)
 - then $\{ w_0[e] \leftarrow w[e]$
 - $H \leftarrow H \cup \{e\}$
 - end do
- return (H)

- $O(m)$ to copy matrix
- $O(1)$ to create list
- $0(m)$ iterations
- $0(1)$ per iteration
- $\text{poly}(\text{Size}(I))$
- $O(1)$ to copy matrix

Runtime:
- $\text{poly}(|E|) = \Omega(m)$
- Clearly $O(m) \in O(\text{Size}(I))$
- So runtime is in $\text{poly}(\text{Size}(I))$
- So yes, this is a polytime reduction

What’s the runtime?
- Let’s assume unit costs for simplicity
- Runtime = $\text{poly}(\text{Size}(I)) + O(m)$

What’s Size(I)?
- (What’s a “useful” lower bound?)
- $\text{Size}(I) = \Omega(|E|) = \Omega(m)$

What would change if we precisely counted the number of bits in each edge, weight, etc., in Size(I)?

What if operations on weight w took $O(\log w)$ time? (bonus slides)
RECAP

• Showed three flavours of TSP are polytime-equivalent (i.e., if you can solve one flavour in polytime, you can solve all three flavours in polytime)
 • One of these was a decision problem (yes/no), and the other two were not (total weight, actual cycle)

• Decision and non-decision flavours of a problem are often polytime-equivalent

• Proofs for a polytime Turing reduction
 • Correctness (return value is correct for every possible input)
 • Polytime (runtime is polynomial in the input size) [or poly(some lower bound on the input size)]
COMPLEXITY CLASS NP

NP: Non-deterministic polynomial time

Note: only one of my sections got here
EXAMPLE: SUBSET-SUM PROBLEM

• Suppose we are given some integers, -7, -3, -2, 5, 8
• Does some subset of these sum to zero?
 • In this case, yes: (-3) + (-2) + 5 = 0

Suppose I give you a certificate consisting of an array of numbers, and claim it represents such a subset.

If I’m telling the truth, then we call this a yes-certificate. It is essentially a proof that “yes” is the correct output.

Of course, I might lie and give you a subset that does not sum to zero...

I could even give you numbers that are not in the input...

Finding such a subset can be extremely difficult.

Can you determine whether I am lying in polynomial time?

Can you use a yes-certificate to solve the problem efficiently?
Suppose there is a non-deterministic oracle, which returns a subset that sums to 0 if one exists and otherwise can return anything (even garbage).

We call the oracle’s output a certificate.

Given a certificate, can you verify in polytime whether it describes a solution to the problem?

Given such an oracle, this algorithm would solve subset-sum:

```python
SubsetSumWithOracle(I):
    C = Oracle(I)
    return verify(I, C)

verify(I, C):
    if C not subset of I then return false
    return (sum(C) == 0)
```

Otherwise, either C is not a subset of the input (return false), or C sums to a non-zero value (return false).

If there exists a subset that sums to 0, then C is one such subset, and we return true.

“Non-deterministic” is the N in NP, and it is so named because of oracles.

Here “non-deterministic” just means the oracle is magically guaranteed to return a yes-certificate if one exists.
BONUS SLIDES
The key idea is: Consider polynomials $P_R(s)$ and $P_O(s)$ representing the runtime of a reduction and its oracle, respectively, on an input of size s.

Worst possible runtime happens if every step in the reduction is a call to the oracle.

This is $P_R(s)P_O(s)$ --- multiplication of polynomials.

But multiplying polynomials of degrees d_1, d_2 results in a polynomial of degree $\leq d_1 + d_2$. Example:

\[P_1(x) = 5x^2 + 10x + 100 \]
\[P_2(x) = 20x^3 + 20 \]
\[P_1(x)P_2(x) = (5x^2 + 10x + 100)(20x^3 + 20) = 100x^5 + 200x^4 + 2000x^3 + 100x^2 + 200x + 2000 \]
Let’s assume $O(\log w)$ time for reading/writing/arithmetic operations on each weight w (and $O(\log w)$ space).

Algorithm:

$\text{TSP-Optimization-Solver}(G = (V, E), w)$

external $\text{TSP-OptimalValue-Solver}, \text{TSP-Dec-Solver}$

$T^* \leftarrow \text{TSP-OptimalValue-Solver}(G, w)$

if $T^* = \infty$ then return (“no hamiltonian cycle exists”)

$w_0 \leftarrow w$

$H \leftarrow \emptyset$

for all $e \in E$

$\begin{array}{l}
\text{do } \\
\{ w_0[e] \leftarrow \infty \}
\end{array}$

if not $\text{TSP-Dec-Solver}(G, w_0, T^*)$ then

$\begin{array}{l}
\{ w_0[e] \leftarrow w[e] \}
\end{array}$

$H \leftarrow H \cup \{ e \}$

return (H)

Suppose we show this is $poly(\text{Size}(I))$

So this is a correct reduction. Is it a polytime reduction?

What’s the runtime on such an input?

Runtime $= \text{poly}(\text{Size}(I))$

$+ O(m + \sum_{u,v \in V} \log w(u, v))$

What’s $\text{Size}(I)$?

(or a useful lower bound on it)

$\text{Size}(I) = O(|E| + \sum_{u,v \in V} \log w(u, v))$

Clearly $O(m + \sum_{u,v \in V} \log w(u, v)) \in \text{poly}(\text{Size}(I))$

So, this is still a polytime reduction

Unit cost vs non-unit cost assumptions usually do not usually make a difference...

This should not be surprising, since the same $O(\log w)$ terms are introduced into both space and time complexities...

24