POLYNOMIAL TRANSFORMATIONS

A subclass of poly-time reductions
commonly used for NP-completeness and impossibility results
POLYNOMIAL TRANSFORMATIONS

For a decision problem Π, let $\mathcal{I}(\Pi)$ denote the set of all instances of Π. Let $\mathcal{I}_{\text{yes}}(\Pi)$ and $\mathcal{I}_{\text{no}}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π.

Suppose that Π_1 and Π_2 are decision problems. We say that there is a polynomial transformation from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f : \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

- $f(I)$ is computable in polynomial time (as a function of $\text{size}(I)$, where $I \in \mathcal{I}(\Pi_1)$)
- if $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$
- if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$

[Mechanics] to give a polynomial transformation, you must:
1. specify $f(I)$,
2. show it runs in poly-time, and
3. show I is a yes-instance of Π_1 IFF $f(I)$ is a yes-instance of Π_2.

Π_1's solution (true/false) is equivalent to Π_2's solution

So, after transforming Π_1's input, you can run a solution to Π_2 and just return the result!
Polynomial Transformations (Cont.)

A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq_P \Pi_2$.

Given a polynomial transformation f from Π_1 to Π_2, the corresponding Turing reduction is as follows:

- Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
- Given an oracle for Π_2, say A, run $A(f(I))$.

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance $f(I)$ of Π_2.

To prove the implication "if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$", we usually prove the contrapositive statement "if $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$, then $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$".

This can help when it is hard to precisely characterize certificates for no-instances (or when such certificates don't prove much).

Also known as Karp reductions and many-one reductions.

We haven't solved the problem yet, so we don't know much about the input...

We saw one instance where a contrapositive was easier to prove when we discussed Hamiltonian cycles.
SUMMARIZING
THE MORE CONVENIENT DEFINITION

○ Let \(\Pi_1 \) and \(\Pi_2 \) be decision problems

○ \(\Pi_1 \leq_P \Pi_2 \iff \) there exists \(f : I(\Pi_1) \to I(\Pi_2) \) such that:
 ○ \(f(I) \) is computable in poly-time, for all \(I \in I(\Pi_1) \)
 ○ If \(I \in I_{\text{yes}}(\Pi_1) \) then \(f(I) \in I_{\text{yes}}(\Pi_2) \)
 ○ If \(f(I) \in I_{\text{yes}}(\Pi_2) \) then \(I \in I_{\text{yes}}(\Pi_1) \)

This is the contrapositive. Was previously (2 slides ago):

\[
\text{If } I \in I_{\text{no}}(\Pi_1) \text{ then } f(I) \in I_{\text{no}}(\Pi_2)
\]

Note: this is the same as saying

\[
(I \in I_{\text{yes}}(\Pi_1)) \iff (f(I) \in I_{\text{yes}}(\Pi_2))
\]

This property justifies correctness for the following generic poly-time transformation code:

\[
P1toP2polyTransformation(I) \\
fI = f(I) \\
\text{return OracleP2}(fI)
\]
Problem 7.8

Clique

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a clique of size $\geq k$? (A **clique** is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem 7.9

Vertex Cover

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a vertex cover of size $\leq k$? (A **vertex cover** is a subset of vertices $W \subseteq V$ such that $\{u, v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)

Every edge must touch a node in W

These k nodes touch every edge in G
CLIQUE \leq_P VERTEX-COVER

- Suppose $I = (G, k)$ is an instance of Clique where $G = (V, E), V = \{v_1, ..., v_n\}$ and $1 \leq k \leq n$

Want to solve $\text{Clique}(G, k)$

Claim: there is a k-clique in G iff there is an $(n - k)$ Vertex-Cover in H

- Construct instance $f(I) = (H, n - k)$ of Vertex-Cover, where $H = (V, F)$ and $v_i v_j \in F \iff v_i v_j \notin E$

Idea: reduce to $\text{VertexCover}(H, n - k)$

Consider the complement graph H of G

Every edge of G is a non-edge of H. Every non-edge of G is an edge of H.

Given an adjacency matrix for G, get H by flipping 0's and 1's.
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_p VC$ if there exists $f : I(CL) \rightarrow I(VC)$ such that:
 - $f(I)$ is computable in poly-time, for all $I \in I(CL)$
 - If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
 - If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

First let’s show this
COMPLEXITY OF THE TRANSFORMATION

- Suppose $I = (G, k)$ is an instance of Clique where $G = (V, E), V = \{v_1, \ldots, v_n\}$ and $1 \leq k \leq n$

 \[
 \text{Want to solve } \text{Clique}(G, k)
 \]

- Construct instance $f(I) = (H, n - k)$ of Vertex-Cover, where $H = (V, F)$ and $v_i v_j \in F \iff v_i v_j \notin E$

 \[
 \text{Idea: reduce to } \text{VertexCover}(H, n - k)
 \]

Assuming adjacency matrix,
\[
\text{Size}(I) = \Theta(n^2 + \log_2 k)
\]

Time to compute $f(I)$?

Constructing H takes $\Theta(n^2)$ time, and computing $n - k$ takes $\Theta(\log n)$ time.

So computing $f(I)$ takes $\Theta(n^2)$ time, which is polynomial in $\text{Size}(I)$.
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC

- $CL \leq_p VC$ iff there exists $f : I(CL) \rightarrow I(VC)$ such that:
 - $f(I)$ is computable in poly-time, for all $I \in I(CL)$
 - If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
 - If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

Now let's show this, i.e., if G contains a k-clique then H contains an $(n - k)$ vertex cover.
PROVING: $I \in I_{yes}(CL) \Rightarrow f(I) \in I_{yes}(VC)$

- Suppose $I = (G, k)$ is a yes-instance of Clique
- Then there is a set W of k vertices in a clique (with all-to-all edges)
- Define $W' = V \setminus W$. Clearly $|W'| = n - k$.
- We claim W' is a vertex cover of H
- Consider any edge $(u, v) \in H$
- If either u or v is in W', then we are done, so assume $u, v \notin W'$ to obtain a contradiction
- Then $u, v \in W$, and W is a clique in G, so $(u, v) \in G$
- But $(u, v) \in H$ implies $(u, v) \notin G$. Contradiction!
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC

$CL \leq_p VC$ **iff** there exists $f : I(CL) \rightarrow I(VC)$ such that:

- $f(I)$ is computable in poly-time, for all $I \in I(CL)$
- If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
- If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

Now let’s show this, i.e., if H contains an $(n - k)$ vertex cover, then G contains a k-clique
PROVING: $f(I) \in I_{yes}(VC) \Rightarrow I \in I_{yes}(CL)$

- Suppose $f(I) = (H, n - k)$ is a yes-instance of VC
- Then there is a set of $n - k$ vertices W' that is a vertex cover of H
- Define $W = V \setminus W'$. Clearly $|W| = k$.
- We claim W is a clique in G
- Since W' is a vertex cover of H, every edge in H has at least one endpoint in W'
- Therefore, no edge in H has two endpoints in W
- So, in G, there are edges between all pairs of nodes in W. So, W is a clique in G.

So, we have demonstrated a polynomial transformation from CLIQUE to VERTEX-COVER.
Theorem 7.10

If Π_1 and Π_2 are decision problems, $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \in \mathbf{P}$, then $\Pi_1 \in \mathbf{P}$.

Proof.

Suppose A is a poly-time algorithm for Π_2, having complexity $O(m^k)$ on an instance of size m. Suppose f is a transformation from Π_1 to Π_2 having complexity $O(n^k)$ on an instance of size n. We solve Π_1 as follows:

1. Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
2. Run $A(f(I))$.

It is clear that this yields the correct answer. We need to show that these two steps can be carried out in polynomial time as a function of $n = \text{Size}(I)$. Step (1) can be executed in time $O(n^k)$ and it yields an instance $f(I)$ having size $m \in O(n^k)$. Step (2) takes time $O(m^k)$. Since $m \in O(n^k)$, the time for step (2) is $O(n^{k\ell})$, as is the total time to execute both steps.
Theorem 7.11

Suppose that Π_1, Π_2 and Π_3 are decision problems. If $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \leq_P \Pi_3$, then $\Pi_1 \leq_P \Pi_3$.

Proof.

We have a polynomial transformation f from Π_1 to Π_2, and another polynomial transformation g from Π_2 to Π_3. We define $h = f \circ g$, i.e., $h(I) = g(f(I))$ for all instances I of Π_1. (Exercise: fill in the details.)