CS 341: ALGORITHMS

Lecture 21: intractability III – complexity class NP, poly transformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
THIS TIME

• Complexity class **NP**
 • Oracles, certificates, polytime verification algorithms
• Two problems in NP
 • Subset sum
 • Hamiltonian Cycle
• Relationship between P and NP
• Polynomial **transformations**
COMPLEXITY CLASS NP

NP: Non-deterministic polynomial time
EXAMPLE: SUBSET-SUM PROBLEM

• Suppose we are given some integers, -7, -3, -2, 5, 8

• Does some subset of these sum to zero?

 • In this case, yes: (-3) + (-2) + 5 = 0

Suppose I give you a certificate consisting of an array of numbers, and claim it represents such a subset.

If I’m telling the truth, then we call this a yes-certificate. It is is essentially a proof that “yes” is the correct output.

Of course, I might lie and give you a subset that does not sum to zero…

I could even give you numbers that are not in the input…

Can you use a yes-certificate to solve the problem efficiently?

Finding such a subset can be extremely difficult.

Can you determine whether I am lying in polynomial time?
Suppose there is a **non-deterministic oracle**, which returns a **subset that sums to 0 if one exists** and otherwise can return anything (even garbage).

We call the oracle’s output a **certificate**.

Given a certificate, can you verify in polytime whether it describes a solution to the problem?

```plaintext
SubsetSumWithOracle(I) = Oracle(I)
return verify(I, C)
```

Given such an oracle, this algorithm would **solve** subset-sum.

If there **exists** a subset that sums to 0, then C is one such subset, and we return true.

Otherwise, either C is not a subset of the input (return false), or C sums to a non-zero value (return false).

“Non-deterministic” is the N in NP, and it is so named because of oracles.

Here “**non-deterministic**” just means the oracle is magically guaranteed to return a yes-certificate if one exists.
Suppose there is a non-deterministic oracle, which returns a subset that sums to 0 if one exists and otherwise can return anything (even garbage).

We call the oracle’s output a certificate.

Given a certificate, can you verify in polytime whether it describes a solution to the problem?

Given a certificate from the oracle, would verify solve the problem in poly-time?

Test whether C sums to 0
For loop with $|C||I|$ time...

Test whether C is a subset of I
For loop with $|C|$ time...

Input to verify is (I, C).
Runtime is $O(|C||I|)$, which is in $O(\text{Size}(I)^2) = O((|C| + |I|)^2)$

```
1 SubsetSumWithOracle(I)
2     C = Oracle(I)
3     return verify(I, C)
4
5 verify(I, C)
6     if C not subset of I then return false
7     return (sum(C) == 0)
```
DUMB SUBSET-SUM ALGORITHM: PRETEND YOU’RE AN ORACLE AND MAKE CERTS.

1. `SubsetSum(X[1..n])`
2. `for` every possible subset `S` of `X`
3. `if` `sumsToZero(S)` `then` return `true`
4. `return false`
Certificates

Certificate: Informally, a certificate for a yes-instance I is some “extra information” C which makes it easy to verify that I is a yes-instance.

Certificate Verification Algorithm: Suppose that Ver is an algorithm that verifies certificates for yes-instances. Then $Ver(I, C)$ outputs “yes” if I is a yes-instance and C is a valid certificate for I. If $Ver(I, C)$ outputs “no”, then either I is a no-instance, or I is a yes-instance and C is an invalid certificate.

Polynomial-time Certificate Verification Algorithm: A certificate verification algorithm Ver is a polynomial-time certificate verification algorithm if the complexity of Ver is $O(n^k)$, where k is a positive integer and $n = \text{Size}(I)$.
Always keep the following in mind: finding a certificate can be much more difficult than verifying a given certificate.

As a rough analogy, finding a proof for a theorem can be much harder than verifying the correctness of someone else's proof.
GENERALIZING BEYOND SUBSET-SUM

• You can solve any decision problem in non-deterministic poly-time, given:
 1. a poly-time non-deterministic oracle, and
 2. a poly-time verify algorithm

• Such that:
 • If I is a yes-instance, then the oracle returns a yes-certificate C (i.e., a “proof” the answer is “yes”) and $\text{verify}(I, C)$ returns true
 • If I is a no-instance, then $\text{verify}(I, C)$ returns false for all C (i.e., it must be impossible to fool verify into returning true)

• The algorithm:

```
1 SolveAnyProblemWithOracle(I)
2 C = Oracle(I)
3 return verify(I, C)
```

Our definition of NP will not explicitly involve non-deterministic oracles. But it is based on certificate verification, which makes more sense if you think of such oracles…

Could you “fool” the subset-sum verify function?
Oracle guesses solution in $O(1)$ time

Verifies solution in poly-time

As we are about to see: existence of a poly-time verifier for a problem means problem is in NP
DEFINING NP

• A decision problem Π is solved by a poly-time verify alg. iff:
 • for every yes-instance I, there exists a certificate C such that $\text{verify}(I, C)$ returns true, and
 • for every no-instance I, $\text{verify}(I, C)$ returns false for every C

• The complexity class NP denotes the set of all decision problems that can be solved by poly-time verify algorithms

• No oracle needed! Note it is not necessary for an oracle to actually exist for a problem to be in NP. We can simply assume certificates come from an oracle, and show a poly-time verify algorithm exists.
MECHANICS OF SHOWING A PROBLEM IS IN NP

• How to show $\Pi \in NP$
 1. Define a yes-certificate
 2. Design a poly-time $\text{verify}(I, C)$ algorithm
 3. Correctness proof
 • Case 1: Let I be any yes-instance; Find C such that $\text{verify}(I, C) = true$
 • Case 2: Let I be any no-instance, and C be any certificate; Prove $\text{verify}(I, C) = false$

 Subset-sum as an example:
 A yes-certificate is a list of indices in the input array where the elements should sum to 0

 How to verify a certificate C is a subset of input I with sum zero?
 \[
 \forall c \in C, \text{ add } I[c] \text{ to sum, and return true iff sum=0} \\
 \mathcal{O}(|C|) \text{ time}
 \]
 This is certainly polytime...

 Case 1: Let I be a yes-instance.
 There is a subset in I that sums to 0.
 For any such subset C, verify(I,C) will return true.

 Case 2: Let I be a no-instance & C be any certificate.
 No subset of I sums to 0.
 So, $\Sigma_{c \in C} I[c] \neq 0$ and verify returns false.

 So, subset-sum $\in NP$
ANOTHER EXAMPLE: HAMILTONIAN CYCLE PROBLEM

Problem 7.2

Hamiltonian Cycle

Instance: An undirected graph $G = (V, E)$.

Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V exactly once.

Let’s show that this problem is in NP! Have to find a poly-time verify algorithm…

Defining a yes-certificate: array of nodes representing a Hamiltonian cycle

How to verify that a given array of nodes represents a cycle?

How about a Hamiltonian cycle?
EXAMPLE: SHOWING “HAMILTONIAN CYCLE” IS IN NP

This is a *verify* algorithm that we imagine being called on the certificate X produced by $oracle(G)$.

A *certificate* X consists of an array of node names (1...n), which might represent a Hamiltonian cycle.

If G is a **yes-instance** of the problem, then must show there **exists** some possible certificate X for which this procedure returns will true.

Yes-instance implies there is a Hamiltonian cycle. Suppose X is a sequence of n consecutive nodes on that cycle. Then we return true!
EXAMPLE: SHOWING “HAMILTONIAN CYCLE” IS IN NP

If G is a no-instance of the problem, then “every possible certificate should cause verify to return false”

Easier to prove the contrapositive: “if verify returns true, then G is a yes-instance.”

This is a verify algorithm that we imagine being called on the certificate X produced by oracle(G)

A certificate X consists of an array of node names (1…n), which might represent a Hamiltonian cycle

If we return true, then the graph contains a cycle with n distinct nodes… So G is a yes-instance

So, Hamiltonian Cycle is in NP
• $P \subseteq NP$

• Consider a problem $\Pi \in P$

• We show there exists a poly-time $verify(I, C)$ such that:
 • For every yes-instance I of Π, $verify(I, C) = true$ for some C
 • For every no-instance I of Π, $verify(I, C) = false$ for all C

• By definition, there is a poly-time algorithm A to solve Π

 • Implement $verify(I, C)$ by simply running $A(I)$ [ignoring C]

 • Regardless of what C is, $verify(I, C)$ satisfies the above

• How about $NP \subseteq P$?

 Million dollar question. We think not.
POLYNOMIAL TRANSFORMATIONS

A subclass of poly-time reductions commonly used for \textit{NP-completeness} and \textit{impossibility} results
POLYNOMIAL TRANSFORMATIONS

For a decision problem \(\Pi \), let \(\mathcal{I}(\Pi) \) denote the set of all instances of \(\Pi \).
Let \(\mathcal{I}_{\text{yes}}(\Pi) \) and \(\mathcal{I}_{\text{no}}(\Pi) \) denote the set of all yes-instances and no-instances (respectively) of \(\Pi \).

Suppose that \(\Pi_1 \) and \(\Pi_2 \) are decision problems. We say that there is a polynomial transformation from \(\Pi_1 \) to \(\Pi_2 \) (denoted \(\Pi_1 \leq_P \Pi_2 \)) if there exists a function \(f : \mathcal{I}(\Pi_1) \rightarrow \mathcal{I}(\Pi_2) \) such that the following properties are satisfied:

- \(f(I) \) is computable in polynomial time (as a function of \(\text{size}(I) \)), where \(I \in \mathcal{I}(\Pi_1) \)
- if \(I \in \mathcal{I}_{\text{yes}}(\Pi_1) \), then \(f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2) \)
- if \(I \in \mathcal{I}_{\text{no}}(\Pi_1) \), then \(f(I) \in \mathcal{I}_{\text{no}}(\Pi_2) \)

[Mechanics] to give a polynomial transformation, you must:
1. **specify** \(f(I) \),
2. **show** it runs in poly-time, and
3. **show** \(I \) is a yes-instance of \(\Pi_1 \) IFF \(f(I) \) is a yes-instance of \(\Pi_2 \).
A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq_T^P \Pi_2$.

Given a polynomial transformation f from Π_1 to Π_2, the corresponding Turing reduction is as follows:

Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.

Given an oracle for Π_2, say A, run $A(f(I))$.

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance $f(I)$ of Π_2.

To prove the implication “if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$”, we usually prove the contrapositive statement “if $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$, then $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$.”

The contrapositive can help when it is hard to precisely characterize certificates for no-instances (or when such certificates don’t prove much).

Also known as Karp reductions and many-one reductions

We saw one instance where a contrapositive was easier to prove when we discussed Hamiltonian cycles.
SUMMARIZING
THE MORE CONVENIENT DEFINITION

- Let Π_1 and Π_2 be decision problems
- $\Pi_1 \leq_P \Pi_2$ iff there exists $f : I(\Pi_1) \to I(\Pi_2)$ such that:
 - $f(I)$ is computable in poly-time, for all $I \in I(\Pi_1)$
 - If $I \in I_{\text{yes}}(\Pi_1)$ then $f(I) \in I_{\text{yes}}(\Pi_2)$
 - If $f(I) \in I_{\text{yes}}(\Pi_2)$ then $I \in I_{\text{yes}}(\Pi_1)$

This is the contrapositive. Was previously (2 slides ago):
If $I \in I_{\text{no}}(\Pi_1)$ then $f(I) \in I_{\text{no}}(\Pi_2)$

Note: this is the same as saying $(I \in I_{\text{yes}}(\Pi_1)) \iff (f(I) \in I_{\text{yes}}(\Pi_2))$

This property justifies correctness for the following generic poly-time Karp reduction:

```
P1toP2KarpReduction(I)
    fI = f(I)
    return OracleForP2(fI)
```
Problem 7.8
Clique
Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.
Question: Does G contain a clique of size $\geq k$? (A **clique** is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem 7.9
Vertex Cover
Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.
Question: Does G contain a vertex cover of size $\leq k$? (A **vertex cover** is a subset of vertices $W \subseteq V$ such that $\{u, v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)
CLIQUE ≤ₚ VERTEX-COVER

• Suppose \(I = (G, k) \) is an instance of Clique where \(G = (V, E) \), \(V = \{v_1, ..., v_n\} \) and \(1 \leq k \leq n \)

- **Want to solve** \(\text{Clique}(G, k) \)

• **Construct** instance \(f(I) = (\overline{G}, n - k) \) of Vertex-Cover, where \(H = (V, \overline{E}) \) and \(v_i v_j \in \overline{E} \iff v_i v_j \notin E \)

- **Claim:** there is a \(k \)-clique in \(G \) iff there is an \((n - k) \) Vertex-Cover in \(\overline{G} \)

- **Consider the complement graph** \(\overline{G} \) of \(G \)

 - Every edge of \(G \) is a non-edge of \(\overline{G} \).
 - Every non-edge of \(G \) is an edge of \(\overline{G} \).

- **Given an adjacency matrix for** \(G \), get \(\overline{G} \) by flipping 0’s and 1’s.
We denote Clique by CL and Vertex-Cover by VC.

$CL \leq_p VC$ iff there exists $f: I(CL) \rightarrow I(VC)$ such that:

1. $f(I)$ is computable in poly-time, for all $I \in I(CL)$
2. If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
3. If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

First let's show this.
COMPLEXITY OF THE TRANSFORMATION

Suppose \(I = (G, k) \) is an instance of Clique where \(G = (V, E) \), \(V = \{v_1, ..., v_n\} \) and \(1 \leq k \leq n \)

Construct instance \(f(I) = (\overline{G}, n - k) \) of Vertex-Cover, where \(\overline{G} = (V, \overline{E}) \) and \(v_i v_j \in \overline{E} \iff v_i v_j \notin E \)

Want to solve \(Clique(G, k) \)

Idea: reduce to \(VertexCover(\overline{G}, n - k) \)

Assuming adjacency matrix, \(Size(I) = \Theta(n^2 + \log_2 k) \)

Time to compute \(f(I) \)?

Constructing \(\overline{G} \) takes \(O(n^2) \) time, and computing \(n - k \) takes \(O(\log n) \) time.

So computing \(f(I) \) takes \(O(n^2) \) time, which is polynomial in \(Size(I) \).
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC.

- $CL \leq_p VC$ iff there exists $f: I(CL) \rightarrow I(VC)$ such that:
 - $f(I)$ is computable in poly-time, for all $I \in I(CL)$
 - If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
 - If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

Now let's show this, i.e., if G contains a k-clique then \bar{G} contains an $(n - k)$ vertex cover.
PROVING: \(I \in I_{\text{yes}}(CL) \Rightarrow f(I) \in I_{\text{yes}}(VC) \)

- Suppose \(I = (G, k) \) is a \textbf{yes}-instance of Clique

- Then there is a set \(W \) of \(k \) vertices in a clique (with \textit{all-to-all} edges)

- Define \(\overline{W} = V \setminus W \). Clearly \(|\overline{W}| = n - k\).

- We \textbf{claim} \(\overline{W} \) is a vertex cover of \(G \)

- Consider any edge \((u, v) \in G\), then we are done, so assume \(u, v \notin \overline{W} \) to obtain a contradiction

- Then \(u, v \in W \), and \(W \) is a clique in \(G \), so \((u, v) \in G\)

- But \((u, v) \in \overline{G}\) implies \((u, v) \notin G\). Contradiction!

Example: \(\text{Clique}(G, 4) \)
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by CL and Vertex-Cover by VC
• $CL \leq_p VC \iff$ there exists $f : I(CL) \to I(VC)$ such that:
 • $f(I)$ is computable in poly-time, for all $I \in I(CL)$
 • If $I \in I_{yes}(CL)$ then $f(I) \in I_{yes}(VC)$
 • If $f(I) \in I_{yes}(VC)$ then $I \in I_{yes}(CL)$

Now let's show this, i.e., if \tilde{G} contains an $(n - k)$ vertex cover, then G contains a k-clique
PROVING: $f(I) \in J_{\text{yes}}(VC) \Rightarrow I \in J_{\text{yes}}(CL)$

- Suppose $f(I) = (\overline{G}, n - k)$ is a yes-instance of VC
- Then there is a set of $n - k$ vertices \overline{W} that is a vertex cover of \overline{G}
- Define $W = V \setminus \overline{W}$. Clearly $|W| = k$.
- We claim W is a clique in G

Since \overline{W} is a vertex cover of \overline{G}, every edge in \overline{G} has at least one endpoint in \overline{W}

Therefore, no edge in \overline{G} has two endpoints in W

So, in G, there are edges between all pairs of nodes in W. So, W is a clique in G.

So, we have demonstrated a polynomial transformation from CLIQUE to VERTEX-COVER