CS 341: ALGORITHMS
Lecture 22: intractability V – More NPC Transformations
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

LAST TIME
• Polynomial transformations
• Poly transformation from Clique to Vertex Cover
• NP Completeness
• SAT is NP complete (NPC)
• Got part way through showing 3SAT is NPC
• Did poly transformation from SAT to 3SAT
• Need to also show 3SAT is in NP

LET’S DO A BRIEF REVIEW
of NPC, poly transformations, and showing a problem is in NP

COMPLEXITY CLASS NP-COMPLETE (NPC)
The complexity class NPC denotes the set of all decision problems \(\Pi \) that satisfy the following two properties:
\(\Pi \in \text{NP} \)
For all \(\Pi' \in \text{NP}, \Pi' \leq_P \Pi \).
NPC is an abbreviation for NP-complete.
Note that the definition does not imply that NP-complete problems exist!

MECHANICS OF SHOWING A PROBLEM IS IN NP
• How to show \(\Pi \in \text{NP} \)
1. Define a yes-certificate
2. Design a poly-time \(\text{verify}(I, C) \) algorithm
3. Correctness proof
• Case 1: Let \(I \) be any yes-instance;
 Find \(C \) such that \(\text{verify}(I, C) = \text{true} \)
• Case 2: Let \(I \) be any no-instance,
 and \(C \) be any certificate;
 Prove \(\text{verify}(I, C) = \text{false} \)

POLYNOMIAL TRANSFORMATION FOR PROVING \(\Pi_2 \) IS IN NPC
• Let \(\Pi_1 \) and \(\Pi_2 \) be decision problems
• \(\Pi_1 \leq_P \Pi_2 \) iff there exists \(f : \text{sat}(I_1) \to \text{sat}(I_2) \) such that:
 • \(f(I) \) is computable in poly-time, for all \(I \in \text{sat}(I_1) \)
 • If \(I \in \text{sat}(I_1) \) then \(f(I) \in \text{sat}(I_2) \)
 • If \(f(I) \in \text{sat}(I_2) \) then \(I \in \text{sat}(I_1) \)
LET'S FINISH SHOWING 3SAT ∈ NPC

- Already poly transformed SAT to 3SAT
- Need to show 3SAT in NP

PROVING 3SAT IS IN NP

1. Define desired YES-certificate
2. Design a poly-time verify(I, C) algorithm
3. Correctness proof
 • Case 1: Let I be any yes-instance; Find C such that verify(I, C) = true
 • Case 2: Let I be any no-instance, and C be any certificate; Prove verify(I, C) = false
 • Contrapositive of case 2: Suppose verify(I, C) = true; Prove I is a yes-instance

MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate
2. Design a poly-time verify(I, C) algorithm
3. Correctness proof
 • Case 1: Let I be any yes-instance; Find C such that verify(I, C) = true
 • Case 2: Let I be any no-instance, and C be any certificate; Prove verify(I, C) = false
 • Contrapositive of case 2: Suppose verify(I, C) = true; Prove I is a yes-instance

NP-HARDNESS

Affinately: problems that are at least as hard as NP-complete (but are not necessarily decision problems)
COMPARING NPC AND NP HARD

- \(\Pi \in \text{NPC} \)
 - Must be a decision problem
 - Must poly transform some NPC problem to \(\Pi \)
 - Must show \(\Pi \) in NP
- \(\Pi \in \text{NP}\text{Hard} \)
 - Does not need to be a decision problem
 - Can use either poly transform or poly Turing reduction
 - Does not need to be in NP (and can’t be if not decision)

TWO POSSIBLE REALITIES...

Some Problems in Each

- NP-Complete
- NP-Hard
- Polynomial

Establishing Another NPC Problem

... by transforming 3-SAT to CLIQUE

Showing 3-SAT ≤ \(\text{P} \) CLIQUE

- Let \(I \) be an instance of 3-SAT with \(n \) variables \(x_1 \ldots x_n \) and \(m \) clauses \(C_1 \ldots C_m \)
 - E.g., \((x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_5)\) \(\land n = 5, m = 4 \)
- We construct CLIQUE input \(f(I) = (x, k) \):
 - Node \(x \) for each literal \(1 \leq c \leq 3 \) in each clause \(1 \leq c \leq m \) \(|V| = 3m \)
 - Edges between all non-contradictory pairs of nodes \(\{x_1 \neq x_2 \} \) in different clauses
 - \(k = m \) (can we find an \(m \)-clique?)
- Must prove that \(f \) is a polynomial transformation

Reasonable 3-SAT representation: array \(\{1, \ldots k\} \) of clauses \(C_{1} \ldots C_{k} \) of literals \(x_{i} \lor \neg x_{i} \lor \neg x_{i} \) where \(x \in \{1 \ldots n\} \)

Node \(\theta(x) = \{x, \neg x, \neg x\} \).
- So runtime \(\Theta(nm^2) \) is \(\Theta(\text{polytime}) \).

SHOWING 3-SAT ≤ \(\text{P} \) CLIQUE

Case 1: Suppose \(I \) is a yes-instance of 3-SAT, and show \(f(I) \) is a yes-instance of \(m \)-clique

- Since \(I \) is a yes-instance, \(\exists \) a satisfying assignment
 - E.g., \(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 0, x_5 = 0 \)
 - For each clause, let \(\exists \) be a satisfied literal in \(C_i \)
 - E.g., \(s_1 = x_1, s_2 = x_2, s_3 = x_3, s_4 = x_4 \)

Claim: the corresponding nodes form an \(m \)-clique

- There are \(m \) of these nodes, each in a different clause
- None of them represent contradictory truth assignments
- So, there are edges between all pairs of them \(\Rightarrow \) they form an \(m \)-clique
SHOWING 3-SAT ≤ₚ CLIQUE

• Let I be an instance of 3-SAT with n variables x₁...xₙ and m clauses C₁...Cₘ.
• E.g., (x₁ ∨ x₂ ∨ x₃) ∧ (x₁ ∨ x₂ ∨ x₄) ∧ (x₁ ∨ x₂ ∨ x₃) ∧ (x₁ ∨ x₂ ∨ x₄)
• Case 2: Suppose f(I) is a yes-instance of m-clique, and show I is a yes-instance of 3-SAT.
• Since f(I) is a yes-instance, it contains an m-clique.
• Clique contains edges between all pairs of nodes.
• There are no edges between nodes in same clause, so clique contains one node from each clause.
• Set the corresponding literals to be satisfied.
• Clique contains no edges between contradictory literals (i.e., no edge connects xᵢ and ̅xᵢ for any i).
• So, truth assignment is consistent and satisfies each clause (and the formula).

LAST STEP: SHOW CLIQUE IS IN NP

• YES-certificate: array of k nodes forming a clique
• Verify(I,C):
 • Check certificate is array of length k, containing vertex IDs
 • Check all-to-all edges to verify these vertices form a clique
 • O(k²) ∈ O(|V|²) runtime → polytime
• Correctness: exercise! Need to prove:
 • If I is a yes instance, verify returns yes, and
 • If verify returns yes then I is a yes instance.

Every problem in NP can be poly transformed to 3-SAT

This additional poly transformation was proved last class (CLIQUE to VC)! We also need to show Vertex Cover is in NP. Exercise. ☺

REDUCING VERTEX-COVER TO SUBSET-SUM

(Proving VertexCover ≤ₚ Subset-Sum)

(If we have time)

SUBSET-SUM (SLIGHTLY DIFFERENT FROM BEFORE)

Problem 7.18

Subset Sum
Instance: A list of sizes S = {s₁,...,sₙ}; and a target sum W. These are all positive integers.
Question: Does there exist a subset J ⊆ {1,...,n} such that \(\sum_{i \in J} s_i = W\)?

• Earlier, we defined SubsetSum with a target sum of 0.
• Here we add a target sum T and take positive integers as input.

God: transform instance J of VC into instance f(J) of SS (in poly time) such that J is a yes-instance of VC if and only if f(J) is a yes-instance of SS.

Idea: turn nodes and edges into a list of integers and a target sum W. Sum W should be achievable if there is a k-vertex cover.

Somehow want the array of integers to encode which edges are covered by various nodes, and target sum to encode that every edge is covered if W is achieved.
Input to Vertex Cover

Sort of like an adjacency matrix, but instead of storing which node pairs are adjacent, store which edges are incident to each node.

\[c_{ij} = \begin{cases} 1 & \text{if } e_{ij} \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases} \]

Each edge becomes a unique number in the array: edge \(e_j \) becomes \(10^j \) ints.

E.g.,

Each node becomes a number in the array:

100 + the integers for all edges incident to the node

This target weight asks for \(k \) nodes and for all edges to be included twice.

Why twice? If both endpoints of \(e_j \) are in the vertex cover, it is counted twice. Otherwise once, and can add \(b_j \).

EXAMPLE

Looking for 2 nodes

Correctness of the Transformation

Case 1: Suppose \(I \) is a yes instance of \(\text{Vertex Cover} \).

There is a vertex cover \(V' \) such that \(|V'| = \frac{k}{2} \). For an edge \(e_j \) let \(W_c \) denote the edges having exactly 1 vertex in \(V' \).

Then \(W = E^{1^t} \cup E^{2^t} \) because \(V' \) is a vertex cover.

Let \(W_c = \{ e_j \mid e_j \text{ has one endpoint in } V' \} \).

Both endpoints in \(V' \). Case 2: Suppose \(I \) is a no instance of \(\text{Vertex Cover} \).

There is a vertex cover \(V' \) such that \(|V'| \geq \frac{k}{2} + 1 \).

Then \(W = E^{1^t} \cup E^{2^t} \) because \(V' \) is a vertex cover.

Let \(W_c = \{ e_j \mid e_j \text{ has both endpoints in } V' \} \).

To get \(2 \times 10^j \) for all \(e_j \) plus \(10^m \) for each node.
We show \(I \) is a yes-instance of Vertex Cover

Since \(f(I) \) is a yes-instance, there exists \(A' \cup B' \) that sums to \(W \)

where \(A' \) contains node ints and \(B' \) contains edge ints

Define \(V' = \{ v_i : a_i \in A' \} \). We claim \(V' \) is a vertex cover of size \(k \).

We must have \(V' = k \) for the coefficient of \(10^m \) to be \(k \) (no carrying)

Suppose (for contra.) \(V' \) does not cover some edge \(e_j = (u, v) \)

Then the coefficient of \(10^j \) is zero for every \(a_i \in A' \)

But the coefficient of \(10^j \) is 2, so a subset of \(B' \) must sum to \(2 \times 10^j \)

But this is impossible (so \(e_j \) is covered, so all edges are covered)

Case 2: Suppose \(f(I) \) is a yes-instance of Subset Sum.

Complexity of the transformation: Easy! Included for your notes.

Trivial to compute all \(b_j \) in \(O(m) \) time

Compute \(a_i \) by visiting all incident edges. Trivial algorithm yields \(O(m) \) time for each \(a_i \)

Total \(O(nm) \) time. This is polynomial in the input graph size!
SUMMARY OF COMPLEXITY CLASSES

- **P** (Polynomial)
 - Examples: decision problem variants of Dijkstra's, BFS, some DP algorithms
 - Decision problems that can be solved by algorithms with runtime poly(input size)

- **NP** (Non-deterministic polynomial)
 - All of P, and e.g., vertex cover, clique, SAT, knapsack
 - Decision problems for which certificates can be verified in time poly(input size)
 - Equivalently, decision problems that can be solved in polytime if you have access to a non-deterministic oracle that returns a yes-certificate if one exists

- **NPC** (NP-complete)
 - Decision problems \(\Pi \in NP \) s.t. every \(\Pi' \in NP \) can be transformed to \(\Pi \) in polytime

- **NP-hard** (At least as hard as NPC)
 - All of NPC and e.g., TSP-optimization, TSP-optimal value
 - Problems \(\Pi \) s.t. every \(\Pi' \in NP \) can be reduced to \(\Pi \) in polytime

- **Note:** P, NP and NPC problems are decidable.