LAST TIME

- Polynomial transformations
 - Poly transformation from Clique to Vertex Cover
- NP Completeness
 - SAT is NP complete (NPC)
 - Got part way through showing 3SAT is NPC
 - Did poly transformation from SAT to 3SAT
 - Need to also show 3SAT is in NP
LET’S DO A BRIEF REVIEW

of NPC, poly transformations, and showing a problem is in NP
The complexity class **NPC** denotes the set of all decision problems Π that satisfy the following two properties:

- $\Pi \in \text{NP}$
- For all $\Pi' \in \text{NP}$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for **NP-complete**.

Note that the definition does not imply that NP-complete problems exist!

Mechanics of proving $\Pi \in \text{NPC}$

1. Show Π is in NP
2. Show a poly transformation from some NPC problem to Π
MECHANICS OF SHOWING A PROBLEM IS IN NP

• How to show $\Pi \in NP$

1. Define a yes-certificate

2. Design a poly-time $\text{verify}(I, C)$ algorithm

3. Correctness proof
 • **Case 1:** Let I be any yes-instance; Find C such that $\text{verify}(I, C) = true$
 • **Case 2:** Let I be any no-instance, and C be any certificate; Prove $\text{verify}(I, C) = false$
POLYNOMIAL TRANSFORMATION FOR PROVING Π_2 IS IN NPC

- Let Π_1 and Π_2 be decision problems.
- $\Pi_1 \leq_P \Pi_2$ iff there exists $f : \mathcal{I}(\Pi_1) \rightarrow \mathcal{I}(\Pi_2)$ such that:
 - $f(I)$ is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(\Pi_1)$ then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$
 - If $f(I) \in \mathcal{I}_{yes}(\Pi_2)$ then $I \in \mathcal{I}_{yes}(\Pi_1)$
LET’S FINISH SHOWING $3\text{SAT} \in \text{NPC}$

- Already poly transformed SAT to 3SAT
- Need to show 3SAT in NP
PROVING 3SAT IS IN NP

1. Define desired YES-certificate
2. Design a poly-time \(\text{verify}(I, C) \) algorithm
3. Correctness proof
 - Case 1: Let \(I \) be any yes-instance; Find \(C \) such that \(\text{verify}(I, C) = true \)
 - Case 2: Let \(I \) be any no-instance, and \(C \) be any certificate; Prove \(\text{verify}(I, C) = false \)
 - Contrapositive of case 2: Suppose \(\text{verify}(I, C) = true \); Prove \(I \) is a yes-instance

3SAT input \(I = (\text{Clauses}[1..m], n) \):
a list of \(m \) clauses, and the number \(n \) of variables. Each clause contains literals. Each literal is a pair
(var, neg): a variable \(\in \{1..n\} \) & a negation bit

YES-certificate \(C = \) array with one bit per variable in \(\{1..n\} \) representing a satisfying assignment

This takes \(O(|\text{Clauses}|) \) time, which is polynomial in \(\text{Size}(I) \)
MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate
2. Design a poly-time \(\text{verify}(I, C) \) algorithm
3. Correctness proof
 - **Case 1:** Let \(I \) be any yes-instance; Find \(C \) such that \(\text{verify}(I, C) = \text{true} \)
 - **Case 2:** Let \(I \) be any no-instance, and \(C \) be any certificate; Prove \(\text{verify}(I, C) = \text{false} \)
 - **Contrapositive of case 2:** Suppose \(\text{verify}(I, C) = \text{true} \); Prove \(I \) is a yes-instance

Let \(I \) be a yes-instance of 3SAT. Then it has a satisfying assignment \(A_s \). And, \(\text{verify}(I, A_s) \) will see that each clause contains a literal satisfied by this assignment, so \(\text{verify} \) will see \(\text{numSat} = |\text{Clauses}| \) and return true.

Suppose \(\text{verify}(I, C) \) returns true. Then \(\text{numSat} = |\text{Clauses}| \), so \(\text{numSat} \) was incremented in each iteration of the loop over clauses, so each clause contains a satisfied literal, so the 3SAT formula in \(I \) is satisfied by \(C \), so \(I \) is a yes-instance.

It follows that 3SAT is in NP. Since we have already shown SAT \(\leq_p \) 3SAT, we now know that 3SAT is NP-COMPLETE.
Every problem in NP can be poly transformed to SAT

Since SAT is NP-complete, so is 3-SAT!

Today and next time let’s start filling out a hierarchy of reductions that prove several problems are NP complete.

But first, since you need to know NP hardness for your assignment...
NP-HARDNESS

Intuitively: problems that are \textit{at least as hard} as NP-complete (but are not necessarily decision problems)
A problem Π is **NP-hard** if there exists a problem $\Pi' \in NPC$ such that $\Pi' \leq_T^P \Pi$.

Every NP-complete problem is automatically NP-hard, but there exist NP-hard problems that are not NP-complete.

Typical examples of NP-hard problems are optimization problems corresponding to NP-complete decision problems.

For example, $\text{TSP-Decision} \leq_T^P \text{TSP-Optimization}$ and $\text{TSP-Decision} \in NPC$, so TSP-Optimization is NP-hard.

TSP-Optimal Value is also NP-hard (and not in NP)

This version returns the **total weight** of an optimal Hamiltonian cycle

Reduction from lecture 19/20

Returns an optimal Hamiltonian cycle
COMPARING NPC AND NP HARD

- $\Pi \in \text{NPC}$
 - Must be a decision problem
 - Must poly transform some NPC problem to Π
 - Must show Π in NP

- $\Pi \in \text{NPHard}$
 - Does not need to be a decision problem
 - Can use either poly transform or poly Turing reduction
 - Does not need to be in NP (and can’t be if not decision)
TWO POSSIBLE REALITIES...

\[\text{NP-Hard} \]

\[\text{NP-Complete} \]

\[\text{NP} \]

\[P \neq \text{NP} \]

\[\text{P = NP = NP-Complete} \]

\[\text{P = NP} \]
We think some stuff may exist here, called NP intermediate problems... but we're not sure.
ESTABLISHING ANOTHER NPC PROBLEM

... BY TRANSFORMING 3-SAT TO CLIQUE

(Proving 3-SAT \leq_P Clique)
SHOWING 3-SAT \(\leq_p \) CLIQUE

- Let \(I \) be an instance of 3-SAT with \(n \) variables \(x_1 \ldots x_n \) and \(m \) clauses \(C_1 \ldots C_m \)
 - E.g., \((x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor x_4 \lor \overline{x_5}) \) \([n = 5, m = 4] \)
- We construct **Clique** input \(f(I) = (G, k) \):
 - Node \(v^c_\ell \) for each literal \(1 \leq \ell \leq 3 \) in each clause \(1 \leq c \leq m \) (so \(|V| = 3m \))
 - Edges between all non-contradictory pairs of nodes (no \(x_i \land \overline{x_i} \)) in different clauses
 - \(k = m \) (can we find an \(m \)-clique?)
 - Must prove this is a polynomial transformation

Reasonable 3-SAT representation: array[1..m] of clauses \(<l_1, l_2, l_3>\) of literals \(<v, neg>\) where \(v \in \{1..n\} \).

Runtime: create \(3m \) nodes, \(O(m^2) \) edges, at \(O(1) \) time each

Note \(O(m) \subseteq O(\text{Size}(I)) \),
So runtime \(O(m^2) \subseteq O(\text{Size}(I)^2) \) \(\Rightarrow \) polytime!
SHOWING 3-SAT \leq_p CLIQUE

Let I be an instance of 3-SAT with n variables $x_1 ... x_n$ and m clauses $C_1 ... C_m$

- E.g., $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3 \lor x_5) \land (\overline{x_3} \lor x_4 \lor \overline{x_5})$

Case 1: Suppose I is a yes-instance of 3-SAT, and show $f(I)$ is a yes-instance of m-clique

Since I is a yes-instance, \exists a satisfying assignment

- E.g., $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$

For each clause C_i, let s_i be a satisfied literal in C_i

- E.g., $s_1 = x_1$, $s_2 = x_2$, $s_3 = x_3$, $s_4 = \overline{x_5}$

Claim: the corresponding nodes form an m-clique

- There are m of these nodes, each in a different clause
- None of them represent contradictory truth assignments
- So, there are edges between all pairs of them \rightarrow they form an m-clique
SHOWING 3-SAT \leq_p CLIQUE

- Let I be an instance of 3-SAT with n variables $x_1 \ldots x_n$ and m clauses $C_1 \ldots C_m$
 - E.g., $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_5) \land (x_3 \lor x_4 \lor \overline{x_5})$

- **Case 2:** Suppose $f(I)$ is a yes-instance of m-clique, and show I is a yes-instance of 3-SAT
 - Since $f(I)$ is a yes-instance, it contains an m-clique
 - Clique contains edges between all pairs of nodes
 - There are no edges between nodes in same clause, so clique contains one node from each clause
 - Set the corresponding literals to be satisfied
 - Clique contains no edges between contradictory literals (i.e., no edge connects x_i and $\overline{x_i}$ for any i)
 - So, truth assignment is consistent and satisfies each clause (and the formula)
LAST STEP: SHOW **CLIQUE IS IN NP**

- **YES-certificate**: array of k nodes forming a clique
- **Verify(I,C)**:
 - Check certificate is array of length k, containing vertex IDs
 - Check all-to-all edges to verify these vertices form a clique
 - $O(k^2) \subseteq O(|V|^2)$ runtime \rightarrow polytime
- **Correctness: exercise!** Need to prove:
 - if I is a yes instance, verify returns yes, and
 - if verify returns yes then I is a yes instance
Every problem in NP can be poly transformed to

\[\text{SAT} \downarrow \text{3-SAT} \downarrow \text{Clique} \]
Every problem in NP can be poly transformed to

This additional poly transformation was proved last class (CL to VC)!

We also need to show Vertex Cover is in NP. Exercise. 😊
REDUCING **VERTEX-COVER TO SUBSET-SUM**

(Proving Vertex-Cover \leq_p Subset-Sum)

(if we have time)
Subset-Sum (Slightly Different From Before)

<table>
<thead>
<tr>
<th>Problem 7.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset Sum</td>
</tr>
<tr>
<td>Instance: A list of sizes $S = [s_1, \ldots, s_n]$; and a target sum W. These are all positive integers.</td>
</tr>
<tr>
<td>Question: Does there exist a subset $J \subseteq {1, \ldots, n}$ such that $\sum_{i \in J} s_i = W$?</td>
</tr>
</tbody>
</table>

- Earlier, we defined Subset-Sum with a **target sum of 0**
- Here we add a **target sum T** and take **positive integers** as input

Goal:
Transform instance I of VC into instance $f(I)$ of SS (in poly time) such that I is a yes-instance of VC iff $f(I)$ is a yes-instance of SS

Idea:
Turn nodes and edges into a list of integers and a target sum W. Sum W should be achievable **IFF** there is a k-vertex cover.

Somehow want the **array of integers** to encode which edges are covered by various nodes, and **target sum** to encode that every edge is covered if W is achieved.
Vertex Cover \leq_P Subset Sum

Suppose $I = (G, k)$, where $G = (V, E)$, $|V| = n$, $|E| = m$ and $1 \leq k \leq n$.

Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_0, \ldots, e_{m-1}\}$. For $1 \leq i \leq n$, $0 \leq j \leq m - 1$, let $C = (c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

c_{ij} = is edge j covered by node i?
Vertex Cover \leq_P Subset Sum

Suppose $I = (G, k)$, where $G = (V, E)$, $|V| = n$, $|E| = m$ and $1 \leq k \leq n$.

Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_0, \ldots, e_{m-1}\}$. For $1 \leq i \leq n$, $0 \leq j \leq m - 1$, let $C = (c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

Define $n + m$ ints and a target sum W as follows:

$$b_j = 10^j \quad (0 \leq j \leq m - 1)$$

- $b_0 = 1$
- $b_1 = 10$
- $b_2 = 100$
- $b_3 = 1000$
- $b_4 = 10000$

Each edge becomes a unique integer in the array: edge e_j becomes 10^j
Vertex Cover \leq_P Subset Sum

Suppose $I = (G, k)$, where $G = (V, E)$, $|V| = n$, $|E| = m$ and $1 \leq k \leq n$.

Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_0, \ldots, e_{m-1}\}$. For $1 \leq i \leq n$, $0 \leq j \leq m - 1$, let $C = (c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

Define $n + m$ ints and a target sum W as follows:

$$a_i = 10^m + \sum_{j=0}^{m-1} c_{ij}10^j \quad (1 \leq i \leq n)$$

$$b_j = 10^j \quad (0 \leq j \leq m - 1)$$

E.g.,

- Each node becomes a unique integer in the array: 10^m + the integers for all edges incident to the node.
- Each edge becomes a unique integer in the array: edge e_j becomes 10^j.
- $+10^m$ means the integer for a node is at least one digit longer than the integers for all edges.
Vertex Cover \leq_P Subset Sum

Suppose \(I = (G, k) \), where \(G = (V, E) \), \(|V| = n \), \(|E| = m \) and \(1 \leq k \leq n \).

Suppose \(V = \{v_1, \ldots, v_n\} \) and \(E = \{e_0, \ldots, e_{m-1}\} \). For \(1 \leq i \leq n \), \(0 \leq j \leq m - 1 \), let \(C = (c_{ij}) \), where

\[
c_{ij} = \begin{cases}
1 & \text{if } e_j \text{ is incident with } v_i \\
0 & \text{otherwise.}
\end{cases}
\]

This target weight asks for \(k \) nodes and for all edges to be included \textbf{twice}.

Each node becomes a unique integer in the array: \(10^m + \) the integers for all edges \textbf{incident} to the node.

Why twice? If both endpoints of \(e_j \) are in the vertex cover, it is counted twice. Otherwise once, and can add \(b_j \).

Each edge becomes a unique integer in the array: edge \(e_j \) becomes \(10^j \).

\[
a_i = 10^m + \sum_{j=0}^{m-1} c_{ij} 10^j \quad (1 \leq i \leq n)
\]

\[
b_j = 10^j \quad (0 \leq j \leq m - 1)
\]

\[
W = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j
\]

Then define \(f(I) = (a_1, \ldots, a_n, b_0, \ldots, b_{m-1}, W) \).
EXAMPLE

Looking for **2** nodes

Is there a 2-VC? Use subset sum to search for $W = 222222$

Subset sum looks for a subset of

$$\{a_1, a_2, a_3, a_4, a_5, b_0, b_1, b_2, b_3, b_4\}$$

that sums to W

It finds $W = a_2 + a_3 + b_0 + b_1 + b_2 + b_3 + b_4$

$\boxed{a_2 + a_3 = 211211}$

Edge e_2 counted twice, other edges once. Sum uses b_0, b_1, b_3, b_4 to get all to be counted twice.

Note: no “carrying” can occur even if we sum everything

Most significant digit(s) of W accurately capture # of nodes

Other digits are in [0,3]. An edge is **definitely covered** by a node if its digit is 2.

Sum of edge sizes incident to v_1, plus 10^m

$W = 222222 = a_2 + a_3 + b_0 + b_1 + b_3 + b_4$

Edges:

- e_0
- e_1
- e_2
- e_3
- e_4

Nodes:

- v_1
- v_2
- v_3
- v_4
- v_5
Correctness of the Transformation

Case 1: Suppose \(I \) is a \textbf{yes}-instance of Vertex-Cover. There is a vertex cover \(V' \subseteq V \) such that \(|V'| = k \). For \(i = 1, 2 \), let \(E^i \) denote the edges having exactly \(i \) vertices in \(V' \). Then \(E = E^1 \cup E^2 \) because \(V' \) is a vertex cover.

Let \(A' = \{a_i : v_i \in V'\} \) and \(B' = \{b_j : e_j \in E^1\} \).

The sum of the \textbf{node ints} in \(A' \) is:

\[
\sum_{\{j : e_j \in E^1\}} 10^j + \sum_{\{j : e_j \in E^2\}} 2 \times 10^j.
\]

The sum of the \textbf{edge ints} in \(B' \) is:

\[
\sum_{\{j : e_j \in E^1\}} 10^j.
\]

Therefore the sum of all the chosen \textbf{ints} is:

\[
k \cdot 10^m + \sum_{\{j : e_j \in E\}} 2 \cdot 10^j = k \cdot 10^m + \sum_{j=1}^{m} 2 \cdot 10^j = W.
\]

Contains node ints

Contains edge ints

\(e_j \) has \textbf{one endpoint} in \(V' \), so nodes in \(V' \) contribute \(1 \times 10^j \) to \(W \)

\(e_j \) has \textbf{both endpoints} in \(V' \), so nodes in \(V' \) contribute \(2 \times 10^j \) to \(W \)

Add another \(1 \times 10^j \) to \(W \) for each \(e_j \) with \textbf{one endpoint} in \(V' \)

To get \(2 \times 10^j \) for all \(e_j \), plus \(10^m \) for each node
Case 2: Suppose \(f(I) \) is a yes-instance of Subset Sum.

- We show \(I \) is a yes-instance of Vertex-Cover
- Since \(f(I) \) is a yes-instance, there exists \(A' \cup B' \) that sums to \(W \)
 - where \(A' \) contains node ints and \(B' \) contains edge ints
- Define \(V' = \{v_i : a_i \in A'\} \). We claim \(V' \) is a vertex cover of size \(k \).
 - We must have \(|V'| = k \) for the coefficient of \(10^m \) to be \(k \) (no carrying)
 - Suppose (for contra.) \(V' \) does not cover some edge \(e_j = (u, v) \)
 - Then the coefficient of \(10^j \) is zero for every \(a_i \in A' \)
 - But the coefficient of \(10^j \) is 2, so a subset of \(B' \) must sum to \(2 \times 10^j \)
 - But this is impossible (so \(e_j \) is covered, so all edges are covered)
Vertex Cover \(\leq_P \) Subset Sum

Suppose \(I = (G, k) \), where \(G = (V, E) \), \(|V| = n \), \(|E| = m \) and \(1 \leq k \leq n \).

Suppose \(V = \{v_1, \ldots, v_n\} \) and \(E = \{e_0, \ldots, e_{m-1}\} \). For \(1 \leq i \leq n \), \(0 \leq j \leq m - 1 \), let \(C = (c_{ij}) \), where

\[
c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}
\]

Define \(n + m \) sizes and a target sum \(W \) as follows:

\[
a_i = 10^m + \sum_{j=0}^{m-1} c_{ij} 10^j \quad (1 \leq i \leq n)
\]

\[
b_j = 10^j \quad (0 \leq j \leq m - 1)
\]

\[
W = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j
\]

Then define \(f(I) = (a_1, \ldots, a_n, b_0, \ldots, b_{m-1}, W) \).

Complexity of the transformation: Easy! Included for your notes.

Assume adjacency matrix and unit cost model for simplicity

Compute \(C \) with trivial algorithm in \(O(nm) \) time

Compute \(a_i \) by visiting all incident edges. Trivial algorithm yields \(O(m) \) time for each \(a_i \), totaling \(O(nm) \) over all \(i \)

Trivial to compute all \(b_j \) in \(O(m) \) time

Trivial to compute \(W \) in \(O(m) \) time

Total \(O(nm) \) time. This is polynomial in the input graph size!
Every problem in NP can be poly transformed to can be poly transformed to

Technically need to also show SubsetSum with target T is in NP (exercise) to know it is in NPC
IS 2-SAT ALSO HARD?
(IF WE HAVE TIME – VERY UNLIKELY)
2-SAT EXAMPLES

- \((p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p)\)
 - Satisfiable: \(p = 0, q = 1, r \in \{0,1\}\)
- \((p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p) \land (p \lor \neg q)\)

```
Logical refresher:
p \Rightarrow q \text{ is equivalent to } \neg p \lor q.
```

Therefore, \(p \lor q\) is equivalent to \(\neg p \Rightarrow q\) and equivalent to \(\neg q \Rightarrow p\)

- Edges (implications of clauses)...
 - \(\neg p \Rightarrow q\)
 - \(p \Rightarrow r\)
 - \(r \Rightarrow \neg p\)
 - \(\neg p \Rightarrow \neg q\)
 - \(\neg q \Rightarrow p\)
 - \(\neg r \Rightarrow \neg p\)
 - \(p \Rightarrow \neg r\)
 - \(q \Rightarrow p\)

```
q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow \neg q \ldots \text{ so } q \text{ cannot be true}
```

```
\neg q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow q \ldots \text{ so } q \text{ cannot be false}
```

Therefore the formula cannot be satisfied!
2-SAT can be solved in polynomial time. Suppose we are given an instance I of 2-SAT on a set of boolean variables $X = \{1..|X|\}$.

1. For every clause $x \lor y$ (where x and y are literals), construct two directed edges \overline{xy} and \overline{yx}. We get a directed graph on vertex set $X \cup \overline{X}$.
2. Determine the strongly connected components of this directed graph.
3. I is a yes-instance if and only if there is no strongly connected component containing x and \overline{x}, for any $x \in X$.

Suppose no variable x is in the same SCC as \overline{x}, then to get a satisfying assignment do the following:
 For each x, if \exists path from x to \overline{x}, then set $x = false$ else set $x = true$.

(variable names are integers in $1..|X|)$
BONUS SLIDES
SUMMARY OF COMPLEXITY CLASSES

- **P** (Poly-time)
 - Decision problems that can be solved by algorithms with runtime poly(input size)
 - E.g., (decision problem variants of:) BFS, Dijkstra’s, some DP algorithms

- **NP** (Non-deterministic poly-time)
 - Decision problems for which certificates can be verified in time poly(input size)
 - Equivalently: decision problems that can be solved in poly-time if you have access to a non-deterministic oracle that returns a yes-certificate if one exists
 - All of P, and e.g., vertex cover, clique, SAT, subset sum

- **NPC** (NP-complete)
 - Decision problems $\Pi \in NP$ s.t. every $\Pi' \in NP$ can be transformed to Π in poly-time
 - E.g., vertex cover, clique, SAT, subset sum, TSP-decision

- **NP-hard** (at least as hard as NPC)
 - Problems Π s.t. every $\Pi' \in NP$ can be reduced to Π in poly-time
 - All of NPC, and e.g., TSP-optimization, TSP-optimal value

Note: P, NP and NPC problems are decidable
Found this neat image online.