Why reinvent the wheel? Reduce to another problem that you have already solved.

2SUM PROBLEM
- Input: Array $A = [A[1], \ldots, A[n]]$ of integers and a target T
- Output: true if there exist two values in A (possibly the same value twice) whose sum equals T, else false

Additional definitions:
- A yes-instance is an input to a decision problem, for which the correct output is true
- A no-instance is an input to a decision problem, for which the correct output is false

Since the output is true/false, this is called a "decision problem"

AN IMPROVEMENT
- For a given slot $A[i]$
 - we can rearrange to get $A[j] = T - A[i]$
- Instead of looping over j
 - search the array for $T - A[i]$

How to do this efficiently?

SIMPLE (BRUTE FORCE) SOLUTION
```
2SUM_BruteForce(A[1..n], T)    
for l = 1.. n                 
for i = l.. n                 
    return true               
return false                 
``` 
Runtime $\Theta(n^2)$ by similar arguments to earlier...

Idea: let’s turn the innermost loop into something more efficient...

IMPROVED ALGORITHM
- Use binary search:
 - Searches n elements in $O(\log n)$ time
- Requires elements to be sorted:
```
2SUM_Improved(A[1..n], T)      
sort(A)                        
for i = 1.. n                  
  j = binary search for T-A[i]  
  in the subarray A[i..n]      
  if search is successful return true
return false                   
``` 
VS. linear search, which takes $O(n)$ time

What is this algorithm’s time complexity?
TIME COMPLEXITY

- \(\Theta(n \log n) \)
- \(\Theta(n) \) improved (A to T)
- \(\Theta(n) \) iterations
- \(\Theta(n \log(n)) \)

- **Loop:** Iterations \(\cdot \) work per iteration
 - \(n \) \(\cdot \) \(\Theta(\log(n)) = \Theta(n \log(n)) \)
- **Entire algorithm:** \(\Theta(n \log n) + \Theta(n \log(n)) = \Theta(n \log n) \)

PREPROCESSING

- The sort is an example of **pre-processing**
- It modifies the input to permit a more efficient algorithm (binary search as opposed to linear search)
- Note that a pre-processing step is only done once

3SUM PROBLEM

- **Input:** Array \(A = [A[1], \ldots, A[n]] \) of integers and a target \(T \)
- **Output:** true if there exist **three** values in \(A \) (possibly taking the same value two or three times) whose sum equals \(T \), false otherwise

This is quite similar to 2SUM,... Can we reduce to 2SUM?

REDUCTIONS

- Suppose we already have a solution to 2SUM called \text{Solve2SUM}
- Suppose we design an algorithm \text{Reduce3SUMto2SUM} that solves 3SUM, and this algorithm calls \text{Solve2SUM} as a subroutine

\text{Solve2SUM} is a black-box subroutine that we call an **“oracle”**

- **Reduce3SUMto2SUM** is called a **reduction** from 3SUM to 2SUM
- Could also process input / call \text{Solve2SUM} multiple times
- If 3SUM can be reduced to 2SUM, we denote this by 3SUM \(\leq \) 2SUM

Mnemonic: 2SUM goes into 3SUM as a subproblem

REDUCTION FROM 3SUM TO 2SUM

- How can we use \text{Solve2SUM} to solve 3SUM?
- By changing the array \(A \) somehow?
- By changing the target \(T \) somehow?

\text{Reduce3SUMto2SUM}(A[1..n], T)

for \(i = 1 \) to \(n \)

\(T2 = T - A[i] \)

if \text{Solve2SUM}(A, T2) return true

return false

T = 9

\(A = [1, 7, 3, 0, 2, -1, 5, 2] \)

\(i = 1 \)

\(T2 = 8 \), \(\text{Solve2SUM}(A, 8) \rightarrow False \)

\(i = 2 \)

\(T2 = 16 \), \(\text{Solve2SUM}(A, 16) \rightarrow False \)

\(i = 3 \)

\(T2 = 11 \), \(\text{Solve2SUM}(A, 11) \rightarrow False \)

\(i = 4 \)

\(T2 = 9 \), \(\text{Solve2SUM}(A, 9) \rightarrow False \)

\(i = 5 \)

\(T2 = 7 \), \(\text{Solve2SUM}(A, 7) \rightarrow False \)

\(i = 6 \)

\(T2 = 10 \), \(\text{Solve2SUM}(A, 10) \rightarrow False \)

\(i = 7 \)

\(T2 = 6 \), \(\text{Solve2SUM}(A, 6) \rightarrow True \)
REDUCTION CORRECTNESS

• Must prove: 3SUM(A, T) ⇔ ∃i : 2SUM(A, T = A[i])
• In other words,
 • Let A, T be any input to 3SUM
 • There exist A[i], A[j], A[k] that sum to T if and only if
 • there exists some A[m] such that Solve2SUM(A, T = A[m]) returns true

REDUCTION CORRECTNESS 2

• WTP: ∃j, A[i], A[k] that sum to T if and only if
• ∃A[m] such that Solve2SUM(A, T = A[m]) returns true

• ⇔ ∃i : Solve2SUM(A, T = A[i]) returns true

REDUCTION RUNTIME

1. Reduce 3SUM to 2SUM(A[1..n], T)
2. for i = 1 to n
3. T2 = T - A[i]
4. if Solve2SUM(A, T2) return true
5. return false

• Θ(n) loop iterations
• Each iteration does Θ(1) + Runtime(Solve2SUM) work
• Runtime depends on implementation of Solve2SUM!
• Brute force: Θ(n^3) = Θ(n^3)
• Binary search: Θ(n) + Θ(n log n) = Θ(n^2 log n)

FURTHER IMPROVEMENT

• Recall our fastest Solve2SUM took O(n log n) time for sorting, and
 O(n log n) total time for searching
• Can actually improve 2SUM to O(n) searching time
 with a greedy approach
• Does not change complexity of 2SUM, but we will see we can still speed up our 3SUM reduction...

FAST 2SUM

T = 23

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>11</th>
<th>12</th>
<th>20</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Correctness
• Invariant: If there exists a solution i’ < j’
 then i’ ≥ i and j’ ≤ j
• Exercise: fill in the proof details

FAST 3SUM TO 2SUM REDUCTION

• Although fast 2SUM is still Θ(n log n), we can sort only once in our reduction
• Reduce 3SUM to 2SUM(A[1..n], T)
• sort(A)
• for i = 1 to n
• T2 = T - A[i]
• if Solve2SUM(A, T2) return true
• return false

• Since 2SUM is given a pre-sorted array, it takes Θ(n) time!
• We get runtime Θ(n log n) + Θ(n) Θ(n) = Θ(n^2)
IS THERE A FASTER 3SUM ALGORITHM?

- For many years, people thought this was likely optimal.
- However faster algorithms appeared in 2014, 2017
- Best known solution is:
 \[O(n^2 \log \log n)^{1/4} \log^2 n \]
 - This is a polylog factor faster than \(O(n^2) \)
- ... we suspect there is no solution faster than \(O(n^{2+o(1)}) \)

A TRIVIAL REDUCTION

- Suppose we want to multiply two integers, \(x \) and \(y \)
- Consider the algebraic identity: \(xy = \frac{(x+y)^2 - x^2 - y^2}{4} \)
- This allows us to show that \textbf{Multiplication is Squaring}

  ```
  1. ReduceMultiplyToSquare(x, y)
  2. z = ComputeSquare(x, y)
  3. t = ComputeSquare(z, z)
  4. return ((a-t)>>log)
  ```

- Oracle: \texttt{ComputeSquare}
 - Oracle "gives" you a solution to the subproblem...
 - If you solve \texttt{ComputeSquare}, you've solved \texttt{Multiply}

A MEDIUM REDUCTION

- \textbf{3SUMZero} problem
 - Input: array \(A = [A[1], ..., A[n]] \) of integers
- Suppose we have solved \textbf{3SUMZero} and want to solve \textbf{3SUM}
 - It is straightforward to \textbf{modify} any algorithm for \textbf{3SUMZero} so it solves \textbf{3SUM}
 - Another approach is to find a reduction \textbf{3SUM} \(\leq \textbf{3SUMZero} \). This would allow code re-use.

\textbf{3SUM} \(\leq \textbf{3SUMZero} \)

- If and only if \(3A[i] + 3A[j] + 3A[k] = 3T = 0 \)
- If and only if \((3A[i] + T) + (3A[j] + T) + (3A[k] - T) = 0 \)
 - This suggests the following approach

  ```
  1. Reduce_3SUM_to_3SUMZero(A, T)
    for i = 1...n
    for j = i+1...n
      return Solve3SUMZero(A)
  ```

 - Given an oracle that solves \textbf{3SUMZero}, let's solve \textbf{3SUM}
 - Can we find \(\sigma x_i = T \) by finding \(\Sigma y_i = 0 \)?

A HARD REDUCTION

- \textbf{3array3SUMZero} problem
 - Input: three arrays of \(n \) integers: \(A, B \) and \(C \)
 - Output: true if there exist \(A[i], B[j], C[k] \), whose sum equals \(0 \), else false
- Let's try to reduce this to \textbf{3SUMZero}

  ```
  1. TRY_reduce_3array3SUMZero_to_3SUMZero(A, B, C)
  2. A' = concatenation of A, B, C
  3. return Solve3SUMZero(A')
  ```

 - Is this reduction correct?
 - Problem: \textbf{Solve3SUMZero} might choose \(\geq 2 \) elements from the same array!
No correct way to get a zero sum!

But Solve3SUMZero(A') returns true!

How to prevent picking 2+ elements from a subarray?

Somehow ensure the sum cannot be zero unless we pick one element from each subarray

Multiply by 10; Preserves sets of elements that sum to 0

Add +1
Add +2
Add -3

If sum of 3 elements is 0, so is their sum mod 10
So, only way to get 0 is to pick one from each subarray!

Consider the sum modulo 10... only way to get it is to pick one element from each of A, B, C

So, there is a sum 0, with one from each of A, B, and C. So true is the correct output for Solve3array(A, B, C)
MANY-ONE REDUCTIONS

- The previous three reductions had a very special structure.
 - We transformed (reduced) an instance of the first problem
to an instance of the second problem.
 - We called the oracle once on the transformed instance.
- Reductions of this form, in the context of decision problems,
called many-one reductions
 - (also known as polynomial transformations or Karp reductions)
- We will many examples of these in the section on intractability.