CS 341: ALGORITHMS

Lecture 3: reductions
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
  trevor.brown@uwaterloo.ca
PROBLEM REDUCTIONS

Why reinvent the wheel? Reduce to another problem that you have already solved.
2SUM PROBLEM

- **Input:** Array $A = [A[1], ..., A[n]]$ of integers and a target $T$

- **Output:** true if there exist two values in $A$ (possibly the same value twice) whose sum equals $T$, else false

Additional definitions:
- A **yes-instance** is an input to a decision problem, for which the correct output is true
- A **no-instance** is an input to a decision problem, for which the correct output is false

Since the output is true/false, this is called a “decision problem”
SIMPLE (BRUTE FORCE) SOLUTION

```python
1 2SUM_BruteForce(A[1..n], T)
2     for i = 1 .. n
3         for j = i .. n
5                 return true
6     return false
```

Runtime $\Theta(n^2)$ by similar arguments to earlier...

Idea: let’s turn the innermost loop into something more efficient...
AN IMPROVEMENT


- Instead of looping over $j$, search the array for $T - A[i]$

How to do this efficiently?
**IMPROVED ALGORITHM**

- Use binary search:
  - Searches $n$ elements in $O(\log n)$ time
  - Requires elements to be sorted!

VS. linear search, which takes $O(n)$ time

What is this algorithm’s time complexity?

```
1 2SUM_Improved(A[1..n], T)
2     sort(A)
3     for i = 1 .. n
4         j = binary search for T-A[i]
5             in the subarray A[1..n]
6             if search is successful return true
7     return false
```
TIME COMPLEXITY

- **Loop**: iterations $\times$ work per iteration
  - $\Theta(n) \times \Theta(\log n) = \Theta(n \log n)$
- **Entire algorithm**: $\Theta(n \log n) + \Theta(n \log n) = \Theta(n \log n)$
PREPROCESSING

- The sort is an example of **pre-processing**
- It modifies the input to permit a more efficient algorithm (binary search as opposed to linear search)
- Note that a pre-processing step is only done once
3SUM PROBLEM

- Output: true if there exist three values in $A$ (possibly taking the same value two or three times) whose sum equals $T$, else false

This is quite similar to 2SUM... Can we reduce to 2SUM?
REDUCTIONS

- Suppose we already have a solution to 2SUM called Solve2SUM
- Suppose we design an algorithm \texttt{Reduce3SUMto2SUM} that solves \texttt{3SUM}, and this algorithm calls \texttt{Solve2SUM} as a subroutine.

\texttt{Solve2SUM} is a black-box subroutine that we call an “oracle”.

\begin{verbatim}
1     Reduce3SUMto2SUM(input_to_3sum)
2         input_to_2sum = process(input_to_3sum)
3         return Solve2SUM(input_to_2sum)
\end{verbatim}

- \texttt{Reduce3SUMto2SUM} is called a reduction from \texttt{3SUM} to \texttt{2SUM}
- Could also process input / call \texttt{Solve2SUM} multiple times
- If \texttt{3SUM} can be reduced to \texttt{2SUM}, we denote this by \texttt{3SUM \leq 2SUM}

Mnemonic: \texttt{2SUM} goes into \texttt{3SUM} as a subproblem.
REDUCTION FROM 3SUM TO 2SUM

- How can we use Solve2SUM to solve 3SUM?
- By changing the array \( A \) somehow?
- By changing the target \( T \) somehow?

```python
1 Reduce3SUMto2SUM(A[1..n], T)
2   for i = 1 .. n
3     T2 = T - A[i]
4     if Solve2SUM(A, T2) return true
5 return false
```
Reduce3SUMto2SUM(A[1..n], T)
for i = 1 .. n
    T2 = T - A[i]
    if Solve2SUM(A, T2) return true
return false

\[
T = 9 \quad A = \begin{bmatrix} 1 & -7 & -3 & 0 & 2 & -1 & 3 & -2 \end{bmatrix}
\]

\[
i = 1 \quad T2 = 8 \quad \text{Solve2SUM}(A, 8) \rightarrow False
\]
\[
i = 2 \quad T2 = 16 \quad \text{Solve2SUM}(A, 16) \rightarrow False
\]
\[
i = 3 \quad T2 = 11 \quad \text{Solve2SUM}(A, 11) \rightarrow False
\]
\[
i = 4 \quad T2 = 9 \quad \text{Solve2SUM}(A, 9) \rightarrow False
\]
\[
i = 5 \quad T2 = 7 \quad \text{Solve2SUM}(A, 7) \rightarrow False
\]
\[
i = 6 \quad T2 = 10 \quad \text{Solve2SUM}(A, 10) \rightarrow False
\]
\[
i = 7 \quad T2 = 6 \quad \text{Solve2SUM}(A, 6) \rightarrow True
\]
REDUCTION CORRECTNESS

- **Must prove:** \(3\text{SUM}(A, T) \iff \exists i : 2\text{SUM}(A, T - A[i])\)
- **In other words,**
- Let \(A, T\) be any input to 3SUM
- There exist \(A[i], A[j], A[k]\) that sum to \(T\) if and only if
- there exists some \(A[m]\) such that \(\text{Solve2SUM}(A, T - A[m])\) returns true
REDUCTION CORRECTNESS 2

- **WTP:** $\exists A[i], A[j], A[k]$ that sum to $T$ if and only if
- $\exists A[m]$ such that $\text{Solve2SUM}(A, T - A[m])$ returns true

```
1: Reduce3SUMto2SUM(A[1..n], T)
    for i = 1 .. n
        T2 = T - A[i]
        if Solve2SUM(A, T2) return true
    return false
```

  - $\iff \exists i : \text{Solve2SUM}(A, T - A[i])$ returns true
REDUCTION RUNTIME

- $\Theta(n)$ loop iterations
- Each iteration does $\Theta(1) + \text{Runtime(Solve2SUM)}$ work
- Runtime depends on implementation of Solve2SUM!
- Brute force: $\Theta(n) \times \Theta(n^2) = \Theta(n^3)$
- Binary search: $\Theta(n) \times \Theta(n \log n) = \Theta(n^2 \log n)$

```java
1 Reduce3SUMto2SUM(A[1..n], T)
2   for i = 1..n
3       T2 = T - A[i]
4       if Solve2SUM(A, T2) return true
5   return false
```
FURTHER IMPROVEMENT

- Recall our fastest Solve2SUM took $O(n \log n)$ time for sorting, and $O(n \log n)$ total time for searching.
- Can actually improve 2SUM to $O(n)$ searching time with a greedy approach.
- Does not change complexity of 2SUM, but we will see we can still speed up our 3SUM reduction...
FAST 2SUM

\[ T = 23 \quad A \]

\[ \begin{array}{c}
\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\
\quad i \quad i \quad j \quad j
\end{array} \]

- **Correctness**
- **Invariant**: if there exists a solution \( i' < j' \) then \( i' \geq i \) and \( j' \leq j \)
- **Exercise**: fill in the proof details

- \( \text{sum} = 24 \)
  - too large! move \( j \)

- \( \text{sum} = 22 \)
  - too small! move \( i \)

- \( \text{sum} = 23 \)
  - Just right!

- However, if \( i > j \), there is no solution
FAST 3SUM TO 2SUM REDUCTION

- Although fast 2SUM is still $\Theta(n \log n)$, we can sort only once in our reduction.

```plaintext
1 Reduce3SUMto2SUM(A[1..n], T)
2   sort(A)
3   for i = 1 .. n
4     T2 = T - A[i]
5     if Fast2SUM(A, T2) return true
6   return false
```

- Since 2SUM is given a pre-sorted array, it takes $\Theta(n)$ time!
- We get runtime $\Theta(n \log n) + \Theta(n)\Theta(n) = \Theta(n^2)$
IS THERE A FASTER 3SUM ALGORITHM?

- For many years, people thought this was likely optimal
- However faster algorithms appeared in 2014, 2017

- Best known solution is:

  \[ O(n^2 (\log \log n)^{O(1)} / \log^2 n) \]

- This is a polylog factor faster than \( O(n^2) \)
- \( \ldots \) we suspect there is no solution faster than \( O(n^{2-\Omega(1)}) \)
PROGRESSIVELY HARDER WORKED EXAMPLES
Suppose we want to multiply two integers, $x$ and $y$.

Consider the algebraic identity: $xy = \frac{(x+y)^2-(x-y)^2}{4}$

This allows us to show that $\text{Multiplication} \leq \text{Squaring}$

**Oracle:** ComputeSquare

Oracle “gives” you a solution to the subproblem...

If you solve ComputeSquare, you’ve solved $\text{Multiply}$
A MEDIUM REDUCTION

- **3SUMZero** problem

Suppose we have solved 3SUMZero and want to solve 3SUM

- It is straightforward to **modify** any algorithm for 3SUMZero so it solves 3SUM

- Another approach is to find a **reduction** $3SUM \leq 3SUMZero$. This would allow code re-use.
3SUM \leq 3SUMZERO

- if and only if \( 3A[i] + 3A[j] + 3A[k] - 3T = 0 \)
- if and only if \( (3A[i] - T) + (3A[j] - T) + (3A[k] - T) = 0 \)
- This suggests the following approach

1. Reduce 3SUM to 3SUMZero(A, T)
2. for \( i = 1..n \)
   - \( B[i] = 3*A[i] - T \)
3. return Solve3SUMZero(B)

Given an oracle that solves 3SUMZero, let's solve 3SUM

Can we find \( \sum x_i = T \) by finding \( \sum y_i = 0 \)?

Use the oracle to solve subproblem 3SUMZero(B)
If this reduction is correct, the result should be a solution to problem 3SUM(A, T)
A HARD REDUCTION

- **3array3SUMZero** problem
  - Input: three arrays of n integers: \(A, B\) and \(C\)
  - Output: true if there exist \(A[i], B[j], C[k]\), whose sum equals 0, else false

Let's try to reduce this to **3SUMZero**

```python
TRY_reduce_3array3SUMZero_to_3SUMZero(A, B, C)
A' = concatenation fo A, B, C
return Solve3SUMZero(A')
```

Is this reduction correct?

Problem: **Solve3SUMZero** might choose \(\geq 2\) elements from the **same array**!
No correct way to get a zero sum!

TRY_reduce_3array3SUMZero_to_3SUMZero(A, B, C)

\[ A' = \text{concatenation of } A, B, C \]

return Solve3SUMZero(A')

But Solve3SUMZero(A') returns true!

How to prevent picking 2+ elements from a subarray?
Somehow ensure the sum cannot be zero unless we pick one element from each subarray

**Multiply by 10; Preserves sets of elements that sum to 0**

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-20</td>
<td>-10</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>40</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

**Add +1**

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>-19</td>
<td>-9</td>
<td>82</td>
<td>32</td>
<td>52</td>
<td>57</td>
<td>37</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

\[ A[i] \mod 10 = 1 \]
\[ A[j] \mod 10 = 2 \]
\[ A[j] \mod 10 = 7 \]

If sum of 3 elements is 0, so is their sum mod 10

So, only way to get 0 is to pick one from each subarray!
Reduce_3array3SUMZero_to_3SUMZero(A, B, C)

for i = 1..n
    D[i] = 10A[i] + 1
    E[i] = 10B[i] + 2
    F[i] = 10C[i] - 3
A' = concatenation of D, E, F
return Solve3SUMZero(A')
To show that this reduction is correct, we prove:

- \textbf{true} is the correct output for $\text{Solve3SUMZero}(A')$ \textbf{if and only if}
- \textbf{true} is the correct output for $\text{Solve3array}(A, B, C)$
CORRECTNESS OF THE REDUCTION (2/3)

- To show that this reduction is correct, we prove: 
  true is the correct output for Solve3SUMZero($A'$) if and only if 
  true is the correct output for Solve3array($A, B, C$)

- **Case 1:** Assume true is the correct output for Solve3array($A, B, C$)
  - Want to show true is the correct output for Solve3SUMZero($A'$)
  - By our assumption, there exist $A[i] + B[j] + C[k] = 0$
  - So $10A[i] + 1 + 10B[j] + 2 + 10C[k] - 3 = 0$
  - So true is the correct output for Solve3SUMZero($A'$)
CORRECTNESS OF THE REDUCTION (3/3)

- **Case 2:** Assume **true** is the correct output for \text{Solve}3\text{SUMZero}(A')
- Want to show **true** is the correct output for \text{Solve}3\text{array}(A, B, C)
  - By our assumption, there exist $A'[i] + A'[j] + A'[k] = 0$
  - Claim: this sum consists of **one element from each** of $A$, $B$ and $C$

By cases... **Example** case:
Suppose, for contradiction, that $A'[i], A'[j], A'[k]$ are all in $B$

Then the sum $A'[i] + A'[j] + A'[k] = 10B[..] + 2 + 10B[..] + 2 + 10B[..] + 2$, which is **not zero**! Contradiction!

Consider the sum modulo 10... only way to get 0 is to pick **one element from each** of $A$, $B$, $C$

So, there is a sum=0, with one from **each** of $A$, $B$ and $C$. So, true is the correct output for \text{Solve}3\text{array}(A, B, C)

So, $3\text{array3SUMZero} \leq 3\text{SUMZero}$
The previous three reductions had a very special structure

- We transformed (reduced) an instance of the first problem to an instance of the second problem
- We called the oracle once, on the transformed instance

Reductions of this form, in the context of decision problems, are called many-one reductions

- (also known as polynomial transformations or Karp reductions)
- We will many examples of these in the section on intractability