Why reinvent the wheel?
Reduce to another problem that you have already solved.

2SUM PROBLEM

- **Input:** Array $A = [A[1], ..., A[n]]$ of integers and a target T
- **Output:** true if there exist two values in A (possibly the same value twice) whose sum equals T, else false

Additional definitions:
- A **yes-instance** is an input to a decision problem, for which the correct output is true
- A **no-instance** is an input to a decision problem, for which the correct output is false

Since the output is true/false, this is called a “decision problem”

SIMPLE (BRUTE FORCE) SOLUTION

```
2SUM BruteForce(A[1..n], T)
for i = 1 .. n
    for j = i .. n
            return true
return false
```

Runtime $O(n^2)$ by similar arguments to earlier...

Idea: let’s turn the innermost loop into something more efficient...

AN IMPROVEMENT

 we can rearrange to get $A[j] = T - A[i]$
- Instead of looping over j,
 search the array for $T - A[i]$

How to do this efficiently?

IMPROVED ALGORITHM

```
2SUM Improved(A[1..n], T)
sort(A)
for i = 1 .. n
    j = binary search for $T - A[i]$
    in the subarray $A[i..n]$
    if search is successful return true
return false
```

VS. linear search, which takes $O(n)$ time

What is this algorithm’s time complexity?
TIME COMPLEXITY

- Loop: iterations * work per iteration
 - \(\Theta(n) \) * \(\Theta(\log n) \) = \(\Theta(n \log n) \)
 - Entire algorithm: \(\Theta(n \log n) + \Theta(n \log n) = \Theta(n \log n) \)

3SUM PROBLEM

- Input: Array \(A = [A[1], ..., A[n]] \) of integers and a target \(T \)
- Output: true if there exist three values in \(A \) (possibly taking the same value two or three times) whose sum equals \(T \), else false

This is quite similar to 2SUM... Can we reduce to 2SUM?

3SUM TO 2SUM

- How can we use Solve2SUM to solve 3SUM?
 - By changing the array \(A \) somehow?
 - By changing the target \(T \) somehow?

```
1. Reduce3SUMto2SUM(A[1..n], T)
2. for i = 1 to n
3. T2 = T - A[i]
4. if Solve2SUM(A, T2) return true
5. return false
```

REDUCTIONS

- Suppose we already have a solution to 2SUM called Solve2SUM
- Suppose we design an algorithm Reduce3SUMto2SUM that solves 3SUM, and this algorithm calls Solve2SUM as a subroutine

Solve2SUM is a black-box subroutine that we call an “oracle”

- Reduce3SUMto2SUM is called a reduction from 3SUM to 2SUM
- Could also process input / call Solve2SUM multiple times
- If 3SUM can be reduced to 2SUM, we denote this by 3SUM \(\leq \) 2SUM

Mnemonic: 2SUM goes into 3SUM as a subproblem

```
1. Reduce3SUMto2SUM(A[1..n], T)
2. for i = 1 to n
3. T2 = T - A[i]
4. if Solve2SUM(A, T2) return true
5. return false
```

PREPROCESSING

- The sort is an example of pre-processing
- If modifies the input to permit a more efficient algorithm (binary search as opposed to linear search)
- Note that a pre-processing step is only done once
REDUCTION CORRECTNESS

- **Must prove:** \(3\text{SUM}(A, T) \Leftrightarrow \exists i : 2\text{SUM}(A, T - A(i)) \)
- **In other words,**
- Let \(A, T \) be any input to 3SUM
- There exist \(A(i), A(j), A(k) \) that sum to \(T \) if and only if
- There exists some \(A(m) \) such that \(2\text{SUM}(A, T - A(m)) \) returns true

REDUCTION CORRECTNESS 2

- **WTP:** \(\exists A(i), A(j), A(k) \) that sum to \(T \) if and only if
- \(\exists A(m) \) such that \(2\text{SUM}(A, T - A(m)) \) returns true

REDUCTION RUNTIME

- \(\Theta(n) \) loop iterations
- Each iteration does \(\Theta(1) + \text{Runtime}(2\text{SUM}) \) work
- Runtime depends on implementation of 2SUM!
- Brute force: \(\Theta(n^3) \)
- Binary search: \(\Theta(n) \times \Theta(n\log n) = \Theta(n^2\log n) \)

FURTHER IMPROVEMENT

- Recall our fastest Solve2SUM took \(O(n\log^2 n) \) time for sorting and \(O(n\log n) \) total time for searching
- Can actually improve 2SUM to \(O(n) \) searching time with a greedy approach
- Does not change complexity of 3SUM, but we will see we can still speed up our 3SUM reduction...

FAST 2SUM

\[
T = 23 \quad \begin{array}{ccccc}
2 & 3 & 5 & 11 & 12 & 20 & 22 \\
i & i & j & j & \\
\end{array}
\]

- **Correctness**
- Invariant: if there exists a solution \(i' < j' \) then \(i' \geq i \) and \(j' \leq j \)
- Exercise: fill in the proof details

FAST 3SUM TO 2SUM REDUCTION

- Although fast 2SUM is still \(\Theta(n\log n) \), we can sort only once in our reduction
- Since 2SUM is given a pre-sorted array, it takes \(\Theta(n) \) time!
- We get runtime \(\Theta(n\log n) + \Theta(n)\Theta(n) = \Theta(n^2) \)
IS THERE A FASTER 3SUM ALGORITHM?

- For many years, people thought this was likely optimal.
- However, faster algorithms appeared in 2014, 2017.
- Best known solution is $O(n^2 \log \log n)/(\log n)$.
- This is a polylog factor faster than $O(n^2)$.
- ...we suspect there is no solution faster than $O(n^{2.373})$.

A TRIVIAL REDUCTION

- Suppose we want to multiply two integers, x and y.
- Consider the algebraic identity: $xy = \frac{(x+y)^2 - (x-y)^2}{4}$.
- This allows us to show that multiplication is squaring.
- **Oracle:** ComputeSquare
 - Oracle "gives" you a solution to the subproblem...
 - If you solve ComputeSquare, you've solved Multiply.

A MEDIUM REDUCTION

- **3SUMZero** problem:
- Suppose we have solved 3SUMZero and want to solve 3SUM.
- It is straightforward to modify any algorithm for 3SUMZero so it solves 3SUM.
- Another approach is to find a reduction $3SUM \leq 3SUMZero$. This would allow code re-use.

3SUM \leq 3SUMZERO

- This suggests the following approach.

```
1 Reduce 3SUM to 3SUMZero (A, T)
2 for i = 1, ..., n
3 B[i] = 3A[i] - T
4 return Solve3SUMZero (B)
```

Given an oracle that solves 3SUMZero, let's solve 3SUM.

Can we find $\sum x_i = T$ by finding $\sum y_i = 0$?

A HARD REDUCTION

- **3array3SUMZero** problem:
 - Input: three arrays of n integers: A, B, and C.
 - Output: true if there exist $A[i], B[j], C[k]$, whose sum equals 0, else false.
- Let's try to reduce this to 3SUMZero.

```
1 TRY_reduce_3array3SUMZero to 3SUMZero (A, B, C)
2 A' = concatenation of A, B, C
3 return Solve3SUMZero (A')
```

Given an oracle that solves 3SUMZero, might choose ≥ 2 elements from the same array.
THE REDUCTION

\[A' = \text{concatenation of } D, E, F \]

CORRECTNESS OF THE REDUCTION (1/3)

\[\text{Reduce 3array3SUMZero to 3SUMZero}(A, B, C) \]

\[\text{for } i = 1 \ldots n \]
\[D(i) = 10A(i) + 1 \]
\[E(i) = 10B(i) + 2 \]
\[F(i) = 10C(i) - 3 \]

\[A' = \text{concatenation of } D, E, F \]

CORRECTNESS OF THE REDUCTION (2/3)

- To show that this reduction is correct, we prove:
- \text{true is the correct output for } Solve3SUMZero(A') \text{ if and only if} \text{true is the correct output for } Solve3array(A, B, C)
- Case 1: Assume true is the correct output for \text{Solve3array}(A, B, C)
 - Want to show true is the correct output for \text{Solve3SUMZero}(A')
 - By our assumption, there exist \(A[i] + B[j] + C[k] = 0 \)
 - \text{So } 10A[i] + 1 + 10B[j] + 2 + 10C[k] - 3 = 0

\[D(i) \]
\[E(i) \]
\[F(i) \]

- So \text{true is the correct output for } Solve3SUMZero(A')

CORRECTNESS OF THE REDUCTION (3/3)

- Case 2: Assume \text{true is the correct output for } Solve3SUMZero(A')
- Want to show \text{true is the correct output for } Solve3array(A, B, C)
 - Claim: this sum consists of one element from each of \(A, B \) and \(C \)

\[\text{By cases... Example case:} \]
\[\text{Suppose, for contradiction, that } A[i], A[j], A[k] \text{ are all in } B \]

Then the sum \(A[i] + A[j] + A[k] = 10B[_] + 2 + 10B[_] + 2 + 10B[_] + 2, \text{ which is not zero} \text{ Contradiction!} \]

Consider the sum modulo 10... only way to get 0 is to pick one element from each of \(A, B, C \)

So, there is a sum 0, with one from each of \(A, B, C \)
So, true is the correct output for \text{Solve3array}(A, B, C)

So, \text{3array3SUMZero} \leq \text{3SUMZero}
MANY-ONE REDUCTIONS

- The previous three reductions had a very special structure
- We transformed (reduced) an instance of the first problem to an instance of the second problem
- We called the oracle once, on the transformed instance
- Reductions of this form, in the context of decision problems, are called **many-one reductions**
 - (also known as polynomial transformations or Karp reductions)
- We will many examples of these in the section on **intractability**