CS 341: ALGORITHMS

Lecture 3: reductions
Readings: see website

Trevor Brown (co-taught with Anna Lubiw)
https://www.student.cs.uwaterloo.ca/~cs341

Why reinvent the wheel?
Reduce to another problem that you have already solved.

2SUM PROBLEM

- **Input:** Array \(A = [A[1], ..., A[n]] \) of integers and a target \(T \)
- **Output:** true if there exist two values in \(A \) (possibly the same value twice) whose sum equals \(T \), else false

Additional definitions:
- A **yes-instance** is an input to a decision problem, for which the correct output is **true**
- A **no-instance** is an input to a decision problem, for which the correct output is **false**

Since the output is true/false, this is called a "decision problem"

SIMPLE (BRUTE FORCE) SOLUTION

Runtime \(\Theta(n^2) \) by similar arguments to earlier...

Idea: let's turn the innermost loop into something more efficient...

AN IMPROVEMENT

- Instead of looping over \(j \), **search** the array for \(T - A[i] \)

How to do this efficiently?

IMPROVED ALGORITHM

- **Use binary search:**
 - Searches \(n \) elements in \(O(\log n) \) time
 - Requires elements to be sorted

What is this algorithm's time complexity?

VS. linear search, which takes \(\Theta(n) \) time
TIME COMPLEXITY

- **Loop:** iterations * work per iteration
 - \(\theta(n) \cdot \theta(\log n) = \theta(n \log n) \)
 - **Entire algorithm:** \(\theta(n \log n) + \theta(n \log n) = \theta(n \log n) \)

PREPROCESSING

- The sort is an example of **pre-processing**
- It modifies the input to permit a more efficient algorithm (binary search as opposed to linear search)
- Note that a pre-processing step is only done once

3SUM PROBLEM

- **Input:** Array \(A = [A[1], ... , A[n]] \) of integers and a target \(T \)
- **Output:** true if there exist three values in \(A \) (possibly taking the same value two or three times) whose sum equals \(T \), else false

This is quite similar to 2SUM... Can we **reduce to 2SUM**?

REDUCTIONS

- Suppose we already have a solution to 2SUM called Solve2SUM
- Suppose we design an algorithm **Reduce3SUMto2SUM** that solves 3SUM, and this algorithm calls Solve2SUM as a subroutine

Solve2SUM is a black-box subroutine that we call an "oracle"

- **Reduce3SUMto2SUM** is called a reduction from 3SUM to 2SUM
- Could also process input / call Solve2SUM multiple times
- If 3SUM can be reduced to 2SUM, we denote this by **3SUM ≤ 2SUM**

Mnemonic: 3SUM goes into 3SUM as a subproblem

3SUM TO 2SUM REDUCTION

- How can we use Solve2SUM to solve 3SUM?
- By changing the array \(A \) somehow?
- By changing the target \(T \) somehow?

\[
\text{Reduce3SUMto2SUM}(A[1], ..., T) \quad \text{for } i = 1 \ldots n
\]
\[
\quad \text{if } T = T - A[i] \quad \text{if Solve2SUM}(A, T2) \text{ return true}
\]
\[
\quad \text{return false}
\]

Reduce3SUMto2SUM(A[1], ..., T)
for i = 1 ... n
\[T2 = T - A[i] \]
if Solve2SUM(A, T2) return true
return false

T = 9 A: 1 -7 3 0 2 -1 3 -2
i = 1 T2 = 8 Solve2SUM(A, 8) → False
i = 2 T2 = 16 Solve2SUM(A, 16) → False
i = 3 T2 = 11 Solve2SUM(A, 11) → False
i = 4 T2 = 9 Solve2SUM(A, 9) → False
i = 5 T2 = 7 Solve2SUM(A, 7) → False
i = 6 T2 = 10 Solve2SUM(A, 10) → False
i = 7 T2 = 6 Solve2SUM(A, 6) → True
REDUCTION CORRECTNESS

- **Must prove:** \(3\text{SUM}(A,T) \iff \exists i : 2\text{SUM}(A,T - A[i])\)
- **In other words,**
 - Let \(A,T\) be any input to \(3\text{SUM}\)
 - There exist \(A[i], A[j], A[k]\) that sum to \(T\) if and only if
 - There exists some \(A[m]\) such that \(\text{Solve}2\text{SUM}(A, T - A[m])\) returns true

REDUCTION CORRECTNESS 2

- **WTP:** \(\exists A[i], A[j], A[k]\) that sum to \(T\) if and only if
 - \(\exists A[m]\) such that \(\text{Solve}2\text{SUM}(A, T - A[m])\) returns true

![Code Snippet](image)

 - \(\iff \exists i : \text{Solve}2\text{SUM}(A, T - A[i])\) returns true

REDUCTION RUNTIME

- \(\Theta(n)\) loop iterations
- Each iteration does \(\Theta(1)\) + Runtime(\text{Solve}2\text{SUM}) work
- Runtime depends on implementation of \text{Solve}2\text{SUM}!
- Brute force: \(\Theta(n) \times \Theta(n^2) = \Theta(n^3)\)
- Binary search: \(\Theta(n) \times \Theta(n \log n) = \Theta(n^2 \log n)\)

FURTHER IMPROVEMENT

- Recall our fastest \text{Solve}2\text{SUM} took \(O(n \log n)\) time for sorting, and \(O(n \log n)\) total time for searching
- Can actually improve \text{Solve}2\text{SUM} to \(O(n)\) searching time with a greedy approach
- Does not change complexity of \text{2SUM}, but we will see we can still speed up our \text{3SUM} reduction...

FAST 2SUM

\[T = 23 \]
\[\begin{array}{cccccccc}
A & 2 & 3 & 5 & 11 & 12 & 20 & 22 \\
\uparrow & \uparrow & \uparrow & & \uparrow & \uparrow & \uparrow & \\
i & i & i & & j & j & & \\
\end{array} \]

- **Correctness**
 - Invariant: if there exists a solution \(i' < j'\) then \(i' \geq i\) and \(j' \leq j\)
 - Exercise: fill in the proof details

FAST 3SUM TO 2SUM REDUCTION

- Although fast \text{2SUM} is still \(\Theta(n \log n)\), we can sort only once in our reduction

```
Reduce3SUMto2SUM(A[1..n], T)
for i = 1 .. n
    T2 = T - A[i]
    if Solve2SUM(A, T2) return true
return false
```

- Since \text{2SUM} is given a pre-sorted array, it takes \(\Theta(n)\) time!
- We get runtime \(\Theta(n \log n) + \Theta(n)\Theta(n) = \Theta(n^2)\)
IS THERE A FASTER 3SUM ALGORITHM?

• For many years, people thought this was likely optimal
• However faster algorithms appeared in 2014, 2017
• Best known solution is:
 \[O(n^2 (\log \log n)^{\frac{3}{2}} \log^2 n) \]
• This is a polylog factor faster than \(O(n^2) \)
• ...we suspect there is no solution faster than \(O(n^{2-\alpha(n)}) \)

A TRIVIAL REDUCTION

• Suppose we want to multiply two integers, \(x \) and \(y \)
• Consider the algebraic identity: \(xy = \frac{(x+y)^2 - (x-y)^2}{4} \)
• This allows us to show that \(\text{Multiplication} \leq \text{Squaring} \)
  ```
  1. ReduceMultiplyToSquare(x, y)
  2. a = ComputeSquare(x+y)
  3. t = ComputeSquare(x-y)
  4. return ((a-t)>>2)
  
  Oracle: ComputeSquare
  • Oracle "gives" you a solution to the subproblem...
  • If you solve ComputeSquare, you've solved Multiply

A MEDIUM REDUCTION

• 3SUMZero problem
  • Input: array \( A = [A[1], ..., A[n]] \) of integers
  • Suppose we have solved 3SUMZero and want to solve 3SUM
  • It is straightforward to modify any algorithm for 3SUMZero so it solves 3SUM
  • Another approach is to find a reduction 3SUM \leq 3SUMZero. This would allow code re-use.

A HARD REDUCTION

• 3array3SUMZero problem
  • Input: three arrays of \( n \) integers: \( A, B \) and \( C \)
  • Output: true if there exist \( A[i], B[j], C[k] \), whose sum equals 0, else false
  • Let's try to reduce this to 3SUMZero
  ```
 1. TRY_reduce_3array3SUMZeroTo_3SUMZero (A, B, C)
 2. A' = concatenation for A, B, C
 3. return Solve3SUMZero(A')

 Use the oracle to solve subproblem 3SUMZero(B)
 If this reduction is correct, the result should be a solution to problem 3SUM(A, T)

3SUM \leq 3SUMZero

• If and only if \(A[i] + A[j] + A[k] = T = 0 \)
• If and only if \(3A[i] + 3A[j] + 3A[k] = 3T = 0 \)
• If and only if \((3A[i] - T) + (3A[j] - T) + (3A[k] - T) = 0 \)
• This suggests the following approach
  ```
  1. reduce_3SUM_to_3SUMZero(A, T)
  2. for i = 1..n
  4. return Solve3SUMZero(B)
  
  Given an oracle that solves 3SUMZero, let's solve 3SUM.
  Can we find \( \sum x_i = T \) by finding \( \sum y_i = 0 \)?

```
No correct way to get a zero sum

```
1 TRY reduce_3array3SUMZero to 3SUMZero(A, B, C)
2   A' = concatenation of A, B, C
3   return Solve3SUMZero(A')
```

1 2 -2 -1 B 8 3 5 C 6 4 7

But Solve3SUMZero(A') returns true!

How to prevent picking 2+ elements from a subarray?

THE REDUCTION

1 Reduce 3array3SUMZero to 3SUMZero(A, B, C)
2 for i = 1..n
3 D[i] = 10A[i] + 1
4 E[i] = 10B[i] + 3
5 F[i] = 10C[i] - 3
6 A' = concatenation of D, E, F
7 return Solve3SUMZero(A')

CORRECTNESS OF THE REDUCTION (1/3)

• To show that this reduction is correct, we prove:
 • **true** is the correct output for **Solve3array(A, B, C)** if and only if
 • **true** is the correct output for **Solve3array3SUMZero(A')**

• **Case 1:** Assume **true** is the correct output for **Solve3array(A, B, C)**
 • Want to show **true** is the correct output for **Solve3array3SUMZero(A')**
 • By our assumption, there exist $A[i] + B[j] + C[k] = 0$
 • So $10A[i] + 1 + 10B[j] + 2 + 10C[k] - 3 = 0$
 - $D[i] + E[j] + F[k]$
 • So **true** is the correct output for **Solve3array3SUMZero(A')**

CORRECTNESS OF THE REDUCTION (2/3)

Case 2: Assume **true** is the correct output for **Solve3array3SUMZero(A')**
• Want to show **true** is the correct output for **Solve3array(A, B, C)**
 • By our assumption, there exist $A'[i] + A'[j] + A'[k] = 0$
 • Claim: this sum consists of one element from each of A, B and C

1 Reduce 3array3SUMZero to 3SUMZero(A, B, C)
2 for i = 1..n
3 D[i] = 10A[i] + 1
4 E[i] = 10B[i] + 2
5 F[i] = 10C[i] - 3
6 A' = concatenation of D, E, F
7 return Solve3SUMZero(A')

CORRECTNESS OF THE REDUCTION (3/3)

• By cases...
 • Example case: Suppose, for contradiction, that $A'[i], A'[j], A'[k]$ are all in B

So, there is a sum 0, with one from each of A, B and C
• So, **true** is the correct output for **Solve3array(A, B, C)**
MANY-ONE REDUCTIONS

• The previous three reductions had a very special structure
 • We transformed (reduced) an instance of the first problem to an instance of the second problem
 • We called the oracle once on the transformed instance
• Reductions of this form, in the context of decision problems, are called many-one reductions
 • (also known as polynomial transformations or Karp reductions)
• We will many examples of these in the section on Intractability