CS 341: ALGORITHMS

Lecture 3: reductions
Readings: see website

Trevor Brown (co-taught with Anna Lubiw)

https://www.student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
Why reinvent the wheel?
Reduce to another problem that you have already solved.
Since the output is true/false, this is called a “decision problem”

Additional definitions:
A **yes-instance** is an input to a decision problem, for which the correct output is **true**

A **no-instance** is an input to a decision problem, for which the correct output is **false**
Simple (Brute Force) Solution

```python
2SUM_BruteForce(A[1..n], T)
for i = 1 .. n
    for j = i .. n
            return true
    return false
```

Runtime \(\Theta(n^2) \) by similar arguments to earlier...

Idea: let’s turn the innermost loop into something more efficient...
AN IMPROVEMENT

• Instead of looping over j, search the array for $T - A[i]$

How to do this efficiently?
IMPROVED ALGORITHM

• Use binary search:
 • Searches \(n \) elements in \(O(\log n) \) time
 • Requires elements to be sorted!

```
2SUM_Improved(A[1..n], T)
    sort(A)
    for i = 1 .. n
        j = binary search for T-A[i] in the subarray A[1..n]
        if search is successful return true
    return false
```
TIME COMPLEXITY

\[\Theta(n \log n) \]

- **Loop**: iterations * work per iteration
 - \(\Theta(n) \times \Theta(\log n) = \Theta(n \log n) \)
- **Entire algorithm**: \(\Theta(n \log n) + \Theta(n \log n) = \Theta(n \log n) \)
PREPROCESSING

• The sort is an example of pre-processing
• It modifies the input to permit a more efficient algorithm (binary search as opposed to linear search)
• Note that a pre-processing step is only done once
3SUM PROBLEM

- Output: true if there exist three values in A (possibly taking the same value two or three times) whose sum equals T, else false

This is quite similar to 2SUM... Can we reduce to 2SUM?
REDUCTIONS

- Suppose we already have a solution to 2SUM called Solve2SUM.
- Suppose we design an algorithm Reduce3SUMto2SUM that solves 3SUM, and this algorithm calls Solve2SUM as a subroutine.

Solve2SUM is a black-box subroutine that we call an “oracle”.

```
1 Reduce3SUMto2SUM(input_to_3sum)
2 input_to_2sum = process(input_to_3sum)
3 return Solve2SUM(input_to_2sum)
```

- Reduce3SUMto2SUM is called a reduction from 3SUM to 2SUM.
- Could also process input / call Solve2SUM multiple times.
- If 3SUM can be reduced to 2SUM, we denote this by $3\text{SUM} \leq 2\text{SUM}$.

Mnemonic: 2SUM goes into 3SUM as a subproblem.
REDUCTION FROM 3SUM TO 2SUM

• How can we use Solve2SUM to solve 3SUM?
• By changing the array A somehow?
• By changing the target T somehow?

```python
1 Reduce3SUMto2SUM(A[1..n], T)
2     for i = 1 .. n
3       T2 = T - A[i]
4       if Solve2SUM(A, T2) return true
5     return false
```
Reduce3SUMto2SUM(A[1..n], T)

for i = 1 .. n
 T2 = T - A[i]
 if Solve2SUM(A, T2) return true

return false

\[
T = 9 \\
A = \begin{bmatrix}
1 & -7 & -3 & 0 & 2 & -1 & 3 & -2 \\
\end{bmatrix}
\]

\[
i = 1 \quad T2 = 8 \quad \text{Solve2SUM}(A, 8) \rightarrow False
\]

\[
i = 2 \quad T2 = 16 \quad \text{Solve2SUM}(A, 16) \rightarrow False
\]

\[
i = 3 \quad T2 = 11 \quad \text{Solve2SUM}(A, 11) \rightarrow False
\]

\[
i = 4 \quad T2 = 9 \quad \text{Solve2SUM}(A, 9) \rightarrow False
\]

\[
i = 5 \quad T2 = 7 \quad \text{Solve2SUM}(A, 7) \rightarrow False
\]

\[
i = 6 \quad T2 = 10 \quad \text{Solve2SUM}(A, 10) \rightarrow False
\]

\[
i = 7 \quad T2 = 6 \quad \text{Solve2SUM}(A, 6) \rightarrow True
\]
REDUCTION CORRECTNESS

• **Must prove:** \(3\text{SUM}(A, T) \iff \exists i : 2\text{SUM}(A, T - A[i])\)

• **In other words,**

 • Let \(A, T\) be any input to \(3\text{SUM}\)

 • There exist \(A[i], A[j], A[k]\) that sum to \(T\)

 if and only if

 • there exists some \(A[m]\) such that

 Solve2SUM\((A, T - A[m])\) returns true
REDUCTION CORRECTNESS 2

- **WTP:** \(\exists A[i], A[j], A[k] \) that sum to \(T \) if and only if
- \(\exists A[m] \) such that \(\text{Solve2SUM}(A, T - A[m]) \) returns true

```
1 Reduce3SUMto2SUM(A[1..n], T)
2     for i = 1 .. n
3     T2 = T - A[i]
4     if Solve2SUM(A, T2) return true
5     return false
```

- \(\iff \exists i : \text{Solve2SUM}(A, T - A[i]) \) returns true
Reduction Runtime

1. `Reduce3SUMto2SUM(A[1..n], T)`
2. `for i = 1 .. n`
3. `T2 = T - A[i]`
4. `if Solve2SUM(A, T2) return true`
5. `return false`

- $\Theta(n)$ loop iterations
- Each iteration does $\Theta(1) + \text{Runtime(Solve2SUM)}$ work
- Runtime depends on implementation of Solve2SUM!
- Brute force: $\Theta(n) \times \Theta(n^2) = \Theta(n^3)$
- Binary search: $\Theta(n) \times \Theta(n \log n) = \Theta(n^2 \log n)$
FURTHER IMPROVEMENT

• Recall our fastest Solve2SUM took $O(n \log n)$ time for sorting, and $O(n \log n)$ total time for searching

• Can actually improve 2SUM to $O(n)$ searching time with a greedy approach

• Does not change complexity of 2SUM, but we will see we can still speed up our 3SUM reduction…
FAST 2SUM

\[T = 23 \quad A = \begin{array}{cccccc}
2 & 3 & 5 & 11 & 12 & 20 & 22 \\
\end{array} \]

- Correctness
- Invariant: if there exists a solution \(i' < j' \) then \(i' \geq i \) and \(j' \leq j \)
- Exercise: fill in the proof details

\[\text{sum} = 24 \quad \text{too large! move } j \]
\[\text{sum} = 22 \quad \text{too small! move } i \]
\[\text{sum} = 23 \quad \text{Just right!} \]

However, if \(i \) and \(j \) meet, there is no solution
FAST 3SUM TO 2SUM REDUCTION

- Although fast 2SUM is still $\Theta(n \log n)$, we can sort only once in our reduction.

```python
1. Reduce3SUMto2SUM(A[1..n], T)
2.     sort(A)
3.     for i = 1 .. n
4.         T2 = T - A[i]
5.         if Fast2SUM(A, T2) return true
6.     return false
```

- Since 2SUM is given a pre-sorted array, it takes $\Theta(n)$ time!

- We get runtime $\Theta(n \log n) + \Theta(n)\Theta(n) = \Theta(n^2)$
IS THERE A FASTER 3SUM ALGORITHM?

• For many years, people thought this was likely optimal
• However faster algorithms appeared in 2014, 2017

• Best known solution is:
 \[O(n^2 (\log \log n)^{O(1)}/\log^2 n) \]
• This is a polylog factor faster than \(O(n^2) \)
• … we suspect there is no solution faster than \(O(n^{2-\Omega(1)}) \)
PROGRESSIVELY HARDER
WORKED EXAMPLES
A TRIVIAL REDUCTION

- Suppose we want to multiply two integers, \(x \) and \(y \)
- Consider the algebraic identity: \(xy = \frac{(x+y)^2 - (x-y)^2}{4} \)
- This allows us to show that **Multiplication \(\leq \) Squaring**

```
1: ReduceMultiplyToSquare(x, y)
2: s = ComputeSquare(x+y)
3: t = ComputeSquare(x-y)
4: return ((s-t)>>2)
```

- **Oracle**: ComputeSquare
 - Oracle “gives” you a solution to the subproblem…
 - If you solve ComputeSquare, you’ve solved **Multiply**
A MEDIUM REDUCTION

• **3SUMZero** problem
 • Input: array $A = [A[1], \ldots, A[n]]$ of integers

• Suppose we have solved 3SUMZero and want to solve 3SUM

• It is straightforward to modify any algorithm for 3SUMZero so it solves 3SUM

• Another approach is to find a reduction $3SUM \leq 3SUMZero$. This would allow code re-use.
3SUM ≤ 3SUMZero

- if and only if $3A[i] + 3A[j] + 3A[k] - 3T = 0$

This suggests the following approach

1. **Reduce_3SUM_to_3SUMZero**(A, T)
 2. for $i = 1..n$
 4. return **Solve3SUMZero**(B)

Preprocess input to create new array B

Use the oracle to solve subproblem $3SUMZero(B)$

If this reduction is correct, the result should be a solution to problem $3SUM(A, T)$
A HARD REDUCTION

• 3array3SUMZero problem
 • Input: three arrays of n integers: A, B and C
 • Output: true if there exist \(A[i], B[j], C[k] \), whose sum equals 0, else false

• Let’s try to reduce this to 3SUMZero

```
1  TRY_reduce_3array3SUMZero_to_3SUMZero(A, B, C)
2     A' = concatenation for A, B, C
3      return Solve3SUMZero(A')
```

Problem: Solve3SUMZero might choose \(\geq 2 \) elements from the same array!
No correct way to get a zero sum!

TRY_reduce_3array3SUMZero_to_3SUMZero(A, B, C)

1. A' = concatenation fo A, B, C
2. return Solve3SUMZero(A')

But Solve3SUMZero(A') returns true!

How to prevent picking 2+ elements from a subarray?
Somehow ensure the sum cannot be zero unless we pick one element from each subarray.

Multiply by 10; **Preserves** sets of elements that sum to 0

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2</td>
<td>-1</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Add +1

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-20</td>
<td>-10</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Add +2

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-20</td>
<td>-10</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Add -3

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-20</td>
<td>-10</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

If sum of 3 elements is 0, so is their sum mod 10

So, only way to get 0 is to pick one from each subarray!
Reduce_3array3SUMZero_to_3SUMZero(A, B, C)

for i = 1..n
 D[i] = 10A[i] + 1
 E[i] = 10B[i] + 2
 F[i] = 10C[i] - 3

A' = concatenation of D, E, F

return Solve3SUMZero(A')
CORRECTNESS OF THE REDUCTION (1/3)

```python
1. Reduce_3array3SUMZero_to_3SUMZero(A, B, C)
2.   for i = 1..n
3.     D[i] = 10A[i] + 1
4.     E[i] = 10B[i] + 2
5.     F[i] = 10C[i] - 3
6. A' = concatenation of D, E, F
7. return Solve3SUMZero(A')
```

For brevity let's just call this `Solve3array` ...

- To show that this reduction is correct, we prove:
 - **true** is the correct output for `Solve3SUMZero(A')` if and only if
 - **true** is the correct output for `Solve3array(A, B, C)`
CORRECTNESS OF THE REDUCTION (2/3)

To show that this reduction is correct, we prove: **true** is the correct output for Solve3SUMZero\((A')\) if and only if **true** is the correct output for Solve3array\((A, B, C)\)

Case 1: Assume **true** is the correct output for Solve3array\((A, B, C)\)

- Want to show **true** is the correct output for Solve3SUMZero\((A')\)
- By our assumption, there exist \(A[i] + B[j] + C[k] = 0\)
- So \(10A[i] + 1 + 10B[j] + 2 + 10C[k] - 3 = 0\)

So **true** is the correct output for Solve3SUMZero\((A')\)
CORRECTNESS OF THE REDUCTION (3/3)

- **Case 2:** Assume **true** is the correct output for `Solve3SUMZero(A')`
- Want to show **true** is the correct output for `Solve3array(A, B, C)`
 - By our assumption, there exist \(A'[i] + A'[j] + A'[k] = 0 \)
 - Claim: this sum consists of **one element from each** of \(A, B \) and \(C \)

By cases... **Example** case:
Suppose, for contradiction, that \(A'[i], A'[j], A'[k] \) are all in \(B \)

Then the sum \(A'[i] + A'[j] + A'[k] = 10B[...] + 2 + 10B[...] + 2 + 10B[...] + 2 \), which is **not zero**! Contradiction!

Consider the sum modulo 10...
only way to get 0 is to pick **one element from each** of \(A, B, C \)

```
1  Reduce_3array3SUMZero_to_3SUMZero(A, B, C)
2    for i = 1..n
3        D[i] = 10A[i] + 1
4        E[i] = 10B[i] + 2
5        F[i] = 10C[i] - 3
6  A' = concatenation of D, E, F
7  return Solve3SUMZero(A')
```

So, there is a sum=0, with one from **each** of \(A, B \) and \(C \).
So, **true** is the correct output for `Solve3array(A, B, C)`

So, 3array3SUMZero ≤ 3SUMZero
MANY-ONE REDUCTIONS

• The previous three reductions had a very special structure
 • We transformed (reduced) an instance of the first problem to an instance of the second problem
 • We called the oracle once, on the transformed instance
• Reductions of this form, in the context of decision problems, are called many-one reductions
 • (also known as polynomial transformations or Karp reductions)
• We will many examples of these in the section on intractability