CS 341: ALGORITHMS

Lecture 4: divide & conquer I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
ONE DOES NOT SIMPLY UNDERSTAND RECURSION WITHOUT UNDERSTANDING RECURSION

DIVIDE AND CONQUER

Notable algorithms: mergesort, quicksort, binary search, ...
DIVIDE-AND-CONQUER DESIGN STRATEGY

• **divide**: Given a problem instance I, construct one or more smaller problem instances I_1, \ldots, I_a
 • These are called **subproblems**
 • Usually, want subproblems to be small compared to the size of I (e.g., half the size)

• **conquer**: For $1 \leq j \leq a$, solve instance I_j **recursively**, obtaining solutions S_1, \ldots, S_a

• **combine**: Given solutions S_1, \ldots, S_a, use an appropriate combining function to find the solution S to the problem instance I
 • i.e., $S = \text{Combine}(S_1, \ldots, S_a)$.

3
D&C PROTO-ALGORITHM

1. \texttt{DnC_template}(I)
2. \hspace{1em} \texttt{if} \ BaseCase(I) \ \texttt{return} \ Result(I)
3. \hspace{1em} \texttt{subproblems} = [I_1, I_2, \ldots, I_a]
4. \hspace{1em} \texttt{subsolutions} = []
5. \hspace{1em} \texttt{for} \ j = 1..a
6. \hspace{2em} \texttt{subsolutions}[j] = \texttt{DnC_template}(I_j)
7. \texttt{return} \ \texttt{Combine}(\texttt{subsolutions})
CORRECTNESS

1 \text{DnC_template}(I)
2 \quad \text{if BaseCase}(I) \quad \text{return Result}(I)
3 \quad \text{subproblems} = [I_1, I_2, \ldots, I_a]
4 \quad \text{subsolutions} = []
5 \quad \text{for } j = 1..a
6 \quad \quad \text{subsolutions}[j] = \text{DnC_template}(I_j)
7 \quad \text{return Combine}(\text{subsolutions})

• Prove base cases are correct
• Inductively assume subproblems are solved correctly
• Show they are correctly assembled into a solution
RUNTIME/SPACE COMPLEXITY?

1. DnC_template(I)
2. if BaseCase(I) return Result(I)
3. subproblems = [I_1, I_2, ..., I_a]
4. subsolutions = []
5. for j = 1..a
6. subsolutions[j] = DnC_template(I_j)
7. return Combine(subsolutions)

- Techniques covered in this lecture
 - Model complexities using recurrence relations
 - Solve with substitution, master theorem, etc.
WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of n integers, which we want to sort in increasing order. The size of the problem instance is n.

divide: Split A into two subarrays: A_L consists of the first $\lfloor \frac{n}{2} \rfloor$ elements in A and A_R consists of the last $\lceil \frac{n}{2} \rceil$ elements in A.

conquer: Run *Mergesort* on A_L and A_R.

combine: After A_L and A_R have been sorted, use a function *Merge* to merge A_L and A_R into a single sorted array. Recall that this can be done in time $\Theta(n)$ with a single pass through A_L and A_R. We simply keep track of the “current” element of A_L and A_R, always copying the smaller one into the sorted array.
MERGE: CONQUER AND COMBINE
PSEUDOCODE FOR MERGESORT

1 Mergesort(A[1..n])
2 if n == 1 then return A
3 nL = ceil(n/2)
4 aL = A[1..nL]
5 aR = A[(nL+1)..n]
6 sL = Mergesort(aL)
7 sR = Mergesort(aR)
8 return Merge(sL, sR)
PSEUDOCODE FOR MERGE

```
Merge(aL[1..nL], aR[1..nR])
  aOut[1..(nL+nR)] = empty array
  iL = 1 ; iR = 1 ; iOut = 1

  while iL < nL and iR < nR
    if aL[iL] < aR[iR]
      aOut[iOut] = aL[iL]
      iL++ ; iOut++
    else
      aOut[iOut] = aR[iR]
      iR++ ; iOut++

  while iL < nL
    aOut[iOut] = aL[iL]
    iL++ ; iOut++

  while iR < nR
    aOut[iOut] = aR[iR]
    iR++ ; iOut++

  return aOut
```

Left array is out of elements

Right array is out of elements
ANALYSIS OF MERGESORT

So, MergeSort(A) takes $O(n)$ time, plus the time for its two recursive calls!

How can we analyze this recursive program structure?

```
1 Mergesort(A[1..n])
2    if n == 1 then return A
3    nL = ceil(n/2)
4    aL = A[1..nL]
5    aR = A[(nL+1)..n]
6    sL = Mergesort(aL)
7    sR = Mergesort(aR)
8    return Merge(sL, sR)
```

$O(1)$

$O(1)$

$O(n)$

$O(n)$
Hulk(n) = Face - Chin + Hulk(n - 1)

RECURRANCE RELATIONS

A crucial analysis tool for recursive algorithms
Suppose a_1, a_2, \ldots, is an infinite sequence of real numbers.

A recurrence relation is a formula that expresses a general term a_n in terms of one or more previous terms a_1, \ldots, a_{n-1}.

A recurrence relation will also specify one or more initial values starting at a_1.

Solving a recurrence relation means finding a formula for a_n that does not involve any previous terms a_1, \ldots, a_{n-1}.

There are many methods of solving recurrence relations. Two important methods are guess-and-check and the recursion tree method.
Let $T(n)$ denote the time to run *Mergesort* on an array of length n.

divide takes time $\Theta(n)$

conquer takes time $T\left(\lceil \frac{n}{2} \rceil \right) + T\left(\lfloor \frac{n}{2} \rfloor \right)$

combine takes time $\Theta(n)$

Recurrence relation:

$$T(n) = \begin{cases}
T\left(\lceil \frac{n}{2} \rceil \right) + T\left(\lfloor \frac{n}{2} \rfloor \right) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1.
\end{cases}$$

$T(n)$ is a function of $T(...)$ so T is a **recurrence relation**

How can we compute/solve for $T(n)$?

To make this easier, assume $n = 2^k$, which lets us ignore floors/ceilings.
RECURSION TREE METHOD

Evaluating recurrences with $T(n/c)$ terms
Recursion Tree Method

\[
\begin{align*}
\text{msort}(n) & \quad \rightarrow \quad cn = cn \\
\text{msort}(n/2) & \quad \rightarrow \quad 2(cn/2) = cn \\
\text{msort}(n/4) & \quad \rightarrow \quad 4(cn/4) = cn \\
\text{msort}(1) & \quad \rightarrow \quad n(c) = cn
\end{align*}
\]

- \(cn\) is the cost of sorting a single element.
- \(2(cn/2)\) is the cost of sorting two elements after being split.
- \(4(cn/4)\) is the cost of sorting four elements after being split.
- \(n(c)\) is the cost of sorting all \(n\) elements.

Table

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(cn)</td>
<td>(cn)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(c(n/2))</td>
<td>(2c(n/2) = cn)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(c(n/4))</td>
<td>(4c(n/4) = cn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\log n)</td>
<td>(n)</td>
<td>(c(n/n) = c)</td>
<td>(nc(n/n) = cn)</td>
</tr>
</tbody>
</table>

Total = \(cn \times \#\text{levels}\)

Total = \(cn \log_2(n)\)

So, mergesort has runtime \(O(n \log n)\)

Can also compute using a table...
Sample recurrence for two recursive calls on problem size \(n/2 \)

\[
T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \text{ is a power of 2} \\
d & \text{if } n = 1,
\end{cases}
\]

where \(c \) and \(d \) are constants.

We can solve this recurrence relation when \(n \) is a power of two, by constructing a recursion tree, as follows:

Step 1 Start with a one-node tree, say \(N \), having the value \(T(n) \).

Step 2 Grow two children of \(N \). These children, say \(N_1 \) and \(N_2 \), have the value \(T(n/2) \), and the value of \(N \) is replaced by \(cn \).

Step 3 Repeat this process recursively, terminating when a node receives the value \(T(1) = d \).

Step 4 Sum the values on each level of the tree, and then compute the sum of all these sums; the result is \(T(n) \).
GUESS-AND-CHECK METHOD

• Suppose we have the following recurrence
 \[T(0) = 4 ; \quad T(n) = T(n - 1) + 6n - 5 \]

• **Guess** the form of the solution **any** way you like

• My approach: **the substitution method**
 • Recursively substitute the formula into itself
 • Try to identify patterns to **guess** the final closed form

• **Prove** that the guess was correct
SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: \(T(0) = 4 ; \quad T(n) = T(n - 1) + 6n - 5 \)

• \(T(n) = (T(n - 2) + 6(n - 1) - 5) + 6n - 5 \)
 \(= T(n - 2) + 6n - 6 - 5 + 6n - 5 \)
 \(= T(n - 2) + 2(6n - 5) - 6 \)
 \(= (T(n - 3) + 6(n - 2) - 5) + 2(6n - 5) - 6 \)
 \(= T(n - 3) + 6n - 2(6) - 5 + 2(6n - 5) - 6 \)
 \(= T(n - 3) + 3(6n - 5) - 6(1 + 2) \)

• ... identify patterns and **guess** what happens in the limit

\[= T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1)) = \text{guess}(n) \]
• $\text{guess}(n) = T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1))$

\[
= 4 + 6n^2 - 5n - 6n(n - 1)/2 \quad \text{(simplify)}
\]

\[
= 3n^2 - 2n + 4
\]

• Are we done?

• The form of $\text{guess}(n)$ was an educated guess.

• To be formal, we must prove it correct using induction
• Recall: \(T(0) = 4 \); \(T(n) = T(n - 1) + 6n - 5 \); \(\text{guess}(n) = 3n^2 - 2n + 4 \)

• Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

• Base case: \(\text{guess}(0) = 3(0)^2 - 2(0) + 4 = T(0) \)

• Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \), show \(\text{guess}(n + 1) = T(n + 1) \).

• \(T(n + 1) = T(n) + 6(n + 1) - 5 \) (by definition)

• \(= \text{guess}(n) + 6(n + 1) - 5 \) (by inductive hypothesis)

• \(= 3n^2 + 4n + 5 \) (substitute & simplify)

• \(\text{guess}(n + 1) = 3(n + 1)^2 - 2(n + 1) + 4 \) (by definition)

• \(= 3n^2 + 4n + 5 = T(n + 1) \) (simplify)
ANOTHER APPROACH

• Suppose you look for a while at the previous recurrence:
 • $T(0) = 4 ; T(n) = T(n - 1) + 6n - 5$
• With some experience, you might just guess it’s quadratic
• If you’re right, it should have the form:
 • $an^2 + bn + c$ for some unknown constants a, b, c
• So, just carry the unknown constants into the proof!
 • You can then determine what the constants must be for the proof to work out
\[T(0) = 4; \, T(n) = T(n-1) + 6n - 5; \, \text{guess}(n) = an^2 + bn + c \]

• Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

• Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)

 this holds iff \(c = 4 \) \((a, b \text{ are not constrained})\)

• Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \),

 show \(\text{guess}(n+1) = T(n+1) \).

\[T(n+1) = T(n) + 6(n+1) - 5 \quad \text{(by definition)} \]

\[= \text{guess}(n) + 6(n + 1) - 5 \quad \text{(by inductive hypothesis)} \]

\[= an^2 + bn + 4 + 6(n + 1) - 5 \quad \text{(substitute)} \]

\[= an^2 + (b + 6)n + 5 \quad \text{(simplify)} \]
Recall: \(guess(n) = an^2 + bn + c \) where \(c = 4 \)

Inductive case: suppose \(guess(n) = T(n) \) for \(n \geq 0 \),
show \(guess(n + 1) = T(n + 1) \).

\[
T(n + 1) = an^2 + (b + 6)n + 5
\]

(continue previous slide)

\[
guess(n + 1) = a(n + 1)^2 + b(n + 1) + 4
\]

(by definition)

\[
= an^2 + 2n + 1 + bn + b + 4
\]

(simplify, and...)

\[
= an^2 + (2a + b)n + (a + b + 4)
\]

(rearrange polynomial)

We want this to be equal to \(T(n + 1) \)

\[
an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5
\]

equivalent to \((2a + b) = (b + 6) \) and \((a + b + 4) = 5 \)

first implies \(a = 3 \) plug a into second to get \(b = 5 - 4 - 3 = -2 \)
MASTER THEOREM FOR RECURRENCES

- Provides a formula for solving many recurrence relations
- We start with a simplified version
- Consider recurrence: $T(1) = d$; $T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^\gamma)$
 where $a \geq 1, b \geq 2$ and n is a power of b (i.e., $n = b^j$ for integer j)

```plaintext
Example corresponding algorithm

2    if BaseCase(I) return Result(I)
3
4    subsolutions = []
5    for j = 1..a
6    let s = subproblem of size n/b
7    subsolutions[j] = DnC_algo(s)
8
9    solution = combine in $n^\gamma$ time
10   return solution
```
MASTER THEOREM FOR RECURRENCES

\[T(1) = d ; \ T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y) \] where \(a \geq 1, \ b \geq 2 \) and \(n = b^j \)

1 node
Problem size \(n \)

\[Lvl\ 0 = 1cn^y \]

\[a \] nodes
Problem size \(\frac{n}{b} \)

\[Lvl\ 1 = ac\left(\frac{n}{b}\right)^y \]

\[a^2 \] nodes
Problem size \(\frac{n}{b^2} \)

\[Lvl\ 2 = a^2c\left(\frac{n}{b^2}\right)^y \]

\[a^j \] nodes
Problem size \(\frac{n}{b^j} = 1 \)

\[Lvl\ j = a^j d \]

Sum over all levels we get
\[T(n) = da^j + \sum_{i=0}^{j-1} ca^i\left(\frac{n}{b^i}\right)^y \]

Let’s rearrange this into a geometric sequence and solve
REARRANGING

- \(T(n) = d a^j + \sum_{i=0}^{j-1} c a^i \left(\frac{n^y}{b^i} \right)^y \)
- \(= d a^j + \sum_{i=0}^{j-1} c a^i \frac{n^y}{(b^i)^y} \)
- \(= d a^j + \sum_{i=0}^{j-1} c a^i \frac{b^x}{(by)^i} \)
- \(= d a^j + \sum_{i=0}^{j-1} c n^y \frac{a^i}{(by)^i} \)
- \(= d a^j + c n^y \sum_{i=0}^{j-1} \left(\frac{a}{by} \right)^i \)
- \(= d a^j + c n^y \sum_{i=0}^{j-1} \left(\frac{b^x}{by} \right)^i \)

Let \(x = \log_b a \)

- \(x \) relates # of subproblems to their size
- Rearranging we have \(b^x = a \)
- \(\therefore T(n) = d a^j + c n^y \sum_{i=0}^{j-1} \left(\frac{b^x}{by} \right)^i \)
- \(= d a^j + c n^y \sum_{i=0}^{j-1} (b^{x-y})^i \)
- Also \(d a^j = d(b^x)^j = d(b^j)^x \)
- Since \(n = b^j \) this is just \(d n^x \)
- \(\therefore T(n) = d n^x + c n^y \sum_{i=0}^{j-1} r^i \)

where \(r = b^{x-y} \)
SOLVING THE GEOMETRIC SEQ

- \(T(n) = dn^x + cn^y \sum_{i=0}^{i-1} r^i \) where \(r = b^{x-y} \)

- Recall formula: \(\sum_{i=0}^{n-1} ar^i = \begin{cases} \frac{ar^{n-1}}{1-r} \in \Theta(r^n) & \text{if } r > 1 \\ na \in \Theta(n) & \text{if } r = 1 \\ a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases} \)

- So different solutions depending on \(r \)

 - **Case 1:** \(r = b^{x-y} > 1 \) \(\iff \) \(x - y > 0 \) \(\iff \) \(x > y \)

 - **Case 2:** \(r = b^{x-y} = 1 \) \(\iff \) \(x - y = 0 \) \(\iff \) \(x = y \)

 - **Case 3:** \(0 < r = b^{x-y} < 1 \) \(\iff \) \(x - y < 0 \) \(\iff \) \(x < y \)
SOLVING THE GEOMETRIC SEQ

- Formula: $\sum_{i=0}^{n-1} ar^i = \begin{cases}
\frac{a r^{n-1}}{r-1} \in \Theta(r^n) & \text{if } r > 1 \\
na \in \Theta(n) & \text{if } r = 1 \\
\frac{a^{1-r^n}}{1-r} \in \Theta(1) & \text{if } 0 < r < 1
\end{cases}$

- **Case 1:** $r = b^{x-y} > 1 \iff x - y > 0 \iff x > y$

- $T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(r^j)$

- $T(n) \in \Theta(n^x + n^y r^j) = \Theta(n^x + n^y (b^{x-y})^j) = \Theta(n^x + n^y (b^j)^{x-y})$

- Recall $b^j = n$, so $T(n) \in \Theta(n^x + n^y n^{x-y}) = \Theta(n^x + n^{y+x-y})$

- So $T(n) \in \Theta(n^x)$
SOLVING THE GEOMETRIC SEQ

\[\sigma_i = 0 \]

\[\sum_{i=0}^{n-1} ar^i = \begin{cases}
 a \frac{r^n - 1}{r - 1} & \text{if } r > 1 \\
 na & \text{if } r = 1 \\
 a \frac{1 - r^n}{1 - r} & \text{if } 0 < r < 1
\end{cases} \]

• **Case 2:** \(r = b^{x-y} = 1 \iff x - y = 0 \iff x = y \)

\[T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(j) \]

\[T(n) \in \Theta(n^x + jn^y) = \Theta(n^x + jn^x) \text{ since } x = y \]

• Recall \(b^j = n \), so \(\log_b b^j = \log_b n \). This means \(j \in \Theta(\log n) \).

• So \(T(n) = \Theta(n^x + n^x \log n) = \Theta(n^x \log n) \)
SOLVING THE GEOMETRIC SEQ

\[
\sum_{i=0}^{n-1} a r^i = \begin{cases}
 a \frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1 \\
 n a \in \Theta(n) & \text{if } r = 1 \\
 a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1
\end{cases}
\]

- Formula: \(\sum_{i=0}^{n-1} a r^i = \begin{cases}
 a \frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1 \\
 n a \in \Theta(n) & \text{if } r = 1 \\
 a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1
\end{cases} \)

- Case 3: \(0 < r = b^{x-y} < 1 \iff x - y < 0 \iff x < y \)

- \(T(n) = d n^x + c n^y \sum_{i=0}^{j-1} r^i \in d n^x + c n^y \Theta(1) \)

- \(T(n) \in \Theta(n^x + n^y) \)

- Since \(x < y \), we simply have \(T(n) \in \Theta(n^y) \)

Note that the base case constant \(d \) is not present in any of these complexities!
Recall: $T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i$ where $r = b^{x-y}$

$x = \log_b a$ \quad \text{i.e.} \quad \log_{\text{subproblem size}} |\text{subproblems}|$

<table>
<thead>
<tr>
<th>case</th>
<th>r</th>
<th>y, x</th>
<th>complexity of $T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>heavy leaves</td>
<td>$r > 1$</td>
<td>$y < x$</td>
<td>$T(n) \in \Theta(n^x)$</td>
</tr>
<tr>
<td>balanced</td>
<td>$r = 1$</td>
<td>$y = x$</td>
<td>$T(n) \in \Theta(n^x \log n)$</td>
</tr>
<tr>
<td>heavy top</td>
<td>$r < 1$</td>
<td>$y > x$</td>
<td>$T(n) \in \Theta(n^y)$</td>
</tr>
</tbody>
</table>

heavy leaves means that the value of the recursion tree is dominated by the values of the leaf nodes.

balanced means that the values of the levels of the recursion tree are constant (except for the last level).

heavy top means that the value of the recursion tree is dominated by the value of the root node.
Consider the recurrence:

\[T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y) \]

where \(a \geq 1, b \geq 2\) and \(n = b^j\).

And let \(x = \log_b a\).

\[
T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}
\]
Recall: simplified master theorem

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y), \text{ where } n \text{ is a power of } b.$$

Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}$$

Questions: $a=?$ $b=?$ $y=?$ $x=?$

which Θ function?
GENERAL MASTER THEOREM

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

where n is a power of b. Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } f(n) \in O(n^{x-\epsilon}) \text{ for some } \epsilon > 0 \\
\Theta(n^x \log n) & \text{if } f(n) \in \Theta(n^x) \\
\Theta(f(n)) & \text{if } f(n)/n^{x+\epsilon} \text{ is an increasing function of } n \\
\text{for some } \epsilon > 0.
\end{cases}$$

Example recurrence:

$$T(n) = 3T(n/4) + n \log n$$

Arbitrary function of n (not just cn^x)

Must reason about relationship between $f(n)$ and n^x
REVISITING THE RECURSION TREE METHOD

• Some recurrences with complex \(f(n) \) functions (such as \(f(n) = \log n \)) can still be solved "by hand"

• Example: Let \(n = 2^j \); \(T(1) = 1 \); \(T(n) = 2T \left(\frac{n}{2} \right) + n \log n \)

<table>
<thead>
<tr>
<th>level</th>
<th># nodes</th>
<th>value at each node</th>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j)</td>
<td>1</td>
<td>(j \cdot 2^j)</td>
<td>(j \cdot 2^j)</td>
</tr>
<tr>
<td>(j - 1)</td>
<td>2</td>
<td>((j - 1) \cdot 2^{j-1})</td>
<td>((j - 1) \cdot 2^j)</td>
</tr>
<tr>
<td>(j - 2)</td>
<td>(2^2)</td>
<td>((j - 2) \cdot 2^{j-2})</td>
<td>((j - 2) \cdot 2^j)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>(2^{j-1})</td>
<td>(2^1)</td>
<td>(2^j)</td>
</tr>
<tr>
<td>0</td>
<td>(2^j)</td>
<td>1</td>
<td>(2^j)</td>
</tr>
</tbody>
</table>

Note
\(\log_2 n = j \)
So
\(j \cdot 2^j = n \log_2 n \)
And
\((j - 1) \cdot 2^{j-1} = \frac{n}{2} \log_2 \frac{n}{2} \)
REVISITING THE RECURSION TREE METHOD

• Recall: $n = 2^j$; $T(1) = 1$; $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

Summing the values at all levels of the recursion tree, we have

$$T(n) = 2^j \left(1 + \sum_{i=1}^{j} i\right) = 2^j \left(1 + \frac{j(j + 1)}{2}\right).$$

Since $n = 2^j$, we have $j = \log_2 n$ and $T(n) \in \Theta(n(\log n)^2)$.

<table>
<thead>
<tr>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j2^j$</td>
</tr>
<tr>
<td>$(j - 1)2^j$</td>
</tr>
<tr>
<td>$(j - 2)2^j$</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>2^j</td>
</tr>
</tbody>
</table>
MAST\(\text{ER THEOREM WHEN } b^{j-1} < n < b^j\)

- \(n/b\) is not always an integer!
 - floors/ceilings are hard
 - not a geometric sequence
- Suppose we get a big-\(O\) bound for \(b^{j-1} < n < b^j\) by instead considering the larger problem size \(b^j\)

\[
T(n) \leq T(b^j) \in \begin{cases}
\Theta((b^j)^x) & \text{if } y < x \\
\Theta((b^j)^x \log b^j) & \text{if } y = x \\
\Theta((b^j)^y) & \text{if } y > x
\end{cases}
\]
MASTER THEOREM WHEN $b^{j-1} < n < b^j$

\[
\begin{cases}
\Theta((b^j)^x) & \text{if } y < x \\
\Theta((b^j)^x \log b^j) & \text{if } y = x \\
\Theta((b^j)^y) & \text{if } y > x
\end{cases}
\]

- $T(n) \leq T(b^j) \in \begin{cases}
\Theta((b^j)^x) & \text{if } y < x \\
\Theta((b^j)^x \log b^j) & \text{if } y = x \\
\Theta((b^j)^y) & \text{if } y > x
\end{cases}$

- **Observation:** $b^j < bn$ since n is between b^{j-1} and b^j

\[
\begin{cases}
\Theta((bn)^x) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x
\end{cases}
\]

- So $T(n) \leq T(b^j) \in \begin{cases}
\Theta((bn)^x) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x
\end{cases}$
MASTER THEOREM WHEN $b^{j-1} < n < b^j$

\[T(n) \in \begin{cases}
\Theta((bn)^x) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x
\end{cases} \]

• **Case 1** ($y < x$): $(bn)^x = b^x n^x$ and b^x is a constant

 • So $T(n) \in O(n^x)$

• **Case 2** ($y = x$): $(bn)^x \log bn = b^x n^x (\log b + \log n)$

 • $T(bn) \in \Theta(b^x n^x \log b + b^x n^x \log n) = \Theta(n^x + n^x \log n)$

 • So $T(n) \in O(n^x \log n)$

• **Case 3** ($y > x$): $(bn)^y = b^y n^y$

 • So $T(n) \in O(n^y)$

Can tackle Ω similarly to get θ