THE SELECTION PROBLEM

• Input: An array A containing n distinct integer values, and an integer k between 1 and n
• Output: The k-th smallest integer in A
• Minimum is a special case where $k = 1$
• Median is a special case where $k = n/2$
• Maximum is a special case where $k = n$
• Simple algorithm for solving selection?

Recursive calls

QuickSelect(k, A, n)

if $n = 1$ then return $A[1]$ // base case

$y = A[1]$ // pick an arbitrary pivot

if $k = y$ then return $A[1]$ // if k is the pivot

else if $k < y$ then return QuickSelect(k, $A[1:]$) // if k is before the pivot

else $k > y$ then return QuickSelect($k - y$, $A[2:]$) // if k is after the pivot

Restructure($A[1:]$, y) // allocate more than enough

for $i = 0$ to n do

$A[i] = AL = new array[1:n]$ // to avoid need for expansion

if $A[i] < y$ then

else $A[i] > y$ then

return $A[1:]$ // ML+1 is the new index of y

Recursive calls

Restructure($A[1:]$, y)}
OVERLY OPTIMISTIC ANALYSIS

If \(i_y = \frac{n}{2} \) then we recurse on \(-\frac{n}{2}\) elements.

If we could always recurse on \(\frac{n}{2} \) elements then

We would get \(T(n) = T(\frac{n}{2}) + \Theta(n) \)

Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0 \).

\(y > x \) and \(T(n) \in \Theta(n^y) = \Theta(n) \) by the Master theorem.

But we don't always recurse on \(\frac{n}{2} \) elements!

WORST-CASE ANALYSIS

If we always get \(i_y = 1 \) and recurse on the right, then

We get \(T(n) = T(n-1) + \Theta(n) \)

By the substitution method this is \(\Theta(n^2) \)

So, sometimes the pivot is good, sometimes it's bad...

What about the average case?

AVERAGE-CASE ANALYSIS

Definition: we say a pivot \(y \) is good if \(i_y \in \left(\frac{n}{4}, \frac{3n}{4} \right) \)

For any good pivot we recurse on at most \(\frac{3n}{4} \) elements

Probability of an arbitrary pivot being good? \(\frac{1}{2} \)

Reducing the size of the subproblem by at least \(1/4 \)

PROOF SKETCH

This is just for your notes, in case you want to know how you'd do this analysis formally

10

TAKING SELECTION FURTHER

We just showed:

QuickSelect with average case runtime in \(\Theta(n) \)

Next up:

Median-of-medians QuickSelect (MOMQuickSelect)

worst case runtime in \(\Theta(n) \)

The algorithm we will use to get a good pivot in every recursive call:}

Here is a more rigorous proof of the average-case complexity. We say the algorithm is in phase \(j \) if the current subarray has size \(x \), where

\[
\frac{n}{4} \leq x \leq \frac{3n}{4}.
\]

Let \(X_j \) be a random variable that denotes the amount of computation time occurring in phase \(j \). If the pivot is in the middle half of the current subarray, then we transition from phase \(j \) to phase \(j + 1 \). This occurs with probability \(\frac{1}{2} \), so the expected number of recursive calls in phase \(j \) is \(2 \). The computing time for each recursive call is linear in the size of the current subarray, so \(E[X_j] \leq 2nX_j/4 \) (where \(E[X_j] \) denotes the expected value of a random variable). The total time of the algorithm is given by \(X = \sum_{j \geq 2} X_j \). Therefore

\[
E[X] = \sum_{j \geq 2} E[X_j] \leq 2n \sum_{j \geq 2} (3/4)^j = 8n \in \Theta(n).
\]

This is just for your notes, in case you want to know how you'd do this analysis formally.
High Level Algorithm

- Similar to QuickSelect
- Choose a pivot
- Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
- Recursively call MOMQuickSelect on one subarray
- Only difference is how we choose the pivot
- Always want to pick a good pivot!

How Good is the Pivot

Recall: median of each row

```
| 1 | 38 | 3 | 20 |
| 2 | 8  | 34 | 9  |
| 3 | 34 | 9  | 20 |
| 4 | 34 | 9  | 20 |
| 5 | 34 | 9  | 20 |
| 6 | 34 | 9  | 20 |
```

Imagine sorting each row

```
| 1 | 38 | 3 | 20 |
| 2 | 8  | 34 | 9  |
| 3 | 34 | 9  | 20 |
| 4 | 34 | 9  | 20 |
| 5 | 34 | 9  | 20 |
| 6 | 34 | 9  | 20 |
```

- If elements ≤ 23 is at least 3/5
 - This is ≥ 3/10ths of our 50-element input
 - So, after restructuring, pivots must have at least 3n/10 elements before and after!

Always Picking a Good Pivot

```
Example input A[1...50]:
```

```
46, 48, 27, 4, 2, 50, 23, 45, 3, 15, 43, 22, 15, 32, 35, 41, 24,
1, 30, 32, 36, 39, 37, 35, 39, 35, 39, 33, 37
```

```
Group into rows of 5
```

```
| 11 | 38 | 6 | 21 |
| 12 | 14 | 9 | 7  |
| 13 | 34 | 9  | 47 |
| 14 | 44 | 34 | 48 |
| 15 | 44 | 34 | 48 |
| 16 | 32 | 35 | 41 |
| 17 | 30 | 12 | 20 |
| 18 | 19 | 36 | 33 |
| 19 | 25 | 40 | 23 |
| 20 | 21 |
```

```
Find medians of each row
```

```
| 11 | 38 | 6 | 21 |
| 12 | 14 | 9 | 7  |
| 13 | 34 | 9  | 47 |
| 14 | 44 | 34 | 48 |
| 15 | 44 | 34 | 48 |
| 16 | 32 | 35 | 41 |
| 17 | 30 | 12 | 20 |
| 18 | 19 | 36 | 33 |
| 19 | 25 | 40 | 23 |
| 20 | 21 |
```

```
Lots of medians
```

```
| 11 | 38 | 6 | 21 |
| 12 | 14 | 9 | 7  |
| 13 | 34 | 9  | 47 |
| 14 | 44 | 34 | 48 |
| 15 | 44 | 34 | 48 |
| 16 | 32 | 35 | 41 |
| 17 | 30 | 12 | 20 |
| 18 | 19 | 36 | 33 |
| 19 | 25 | 40 | 23 |
| 20 | 21 |
```

```
# elements ≤ 23 is at least 3/5
```

```
This is ≥ 3/10ths of our 50-element input
```

```
So, after restructuring, pivots must have at least 3n/10 elements before and after!
```

```
We recurse on d_i or d_j, and both have size at most 7n/10
```

```
We want to pick a pivot
```

```
We choose the pivot
```

```
Imagine sorting each row
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
How much does the problem shrink?

- Shrinks by at least $3(r+1)$
- Problem size $= n = 10r + 5$
- Subproblem size $\leq n - \text{Shrink} = n - 3(r + 1)$
 - $= 10r + 5 - 3r - 3 = 7r + 2$
- Express in terms of n using $r = \frac{n-5}{10}$
 - Subproblem size $\leq 7 \left(\frac{n-5}{10}\right) + 2$
 - $= \frac{7n}{10} - \frac{7}{2} + 2 = \frac{7n}{10} + \frac{1}{2}$

Time complexity

- $T(n) \in O(n) + T(n/5) + T(7n/10)$ if $n \geq 15$
- $T(n) \in O(1)$ if $n \leq 14$

Guess & check

- Let $T(n) = cn + T\left(\frac{n}{2}\right) + T\left(\frac{n}{10}\right)$ where $c' > 0$
- Want to prove: $T(n) = cn$ for some $c > 0$
- Note c and c' are independent constants
 - $c' = 0$ comes from the work at each level of recursion being $O(n)$
 - c is a positive constant we are trying to show exists
- I.H.: Suppose $3c > 0$ if $T(n') = cn'$ for $15 \leq n' < n$
 - $T(n) = cn + c\frac{n}{2} + c\frac{7n}{10}$ (by inductive hypoth.)
 - $T(n) = cn$ (want this to be true)
 - $\Rightarrow c' + c\frac{1}{2} + c\frac{7}{10} = c \Rightarrow c = 10c'$ (by algebra)