CS 341: ALGORITHMS

Lecture 4: divide & conquer III

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
THE SELECTION PROBLEM

NATURAL SELECTION
in progress...
THE SELECTION PROBLEM

- Input: An array A containing n distinct integer values, and an integer k between 1 and n
- Output: The k-th smallest integer in A
- **Minimum** is a special case where $k = 1$
- **Median** is a special case where $k = \frac{n}{2}$
- **Maximum** is a special case where $k = n$
- Simple algorithm for solving selection?
Suppose we choose a **pivot** element y in the array A, and we **restructure** A so that all elements less than y precede y in A, and all elements greater than y occur after y in A. (This is exactly what is done in *Quicksort*, and it takes linear time.)

<table>
<thead>
<tr>
<th>A</th>
<th>12</th>
<th>4</th>
<th>6</th>
<th>27</th>
<th>23</th>
<th>17</th>
<th>40</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4</td>
<td>6</td>
<td>27</td>
<td>23</td>
<td>17</td>
<td>40</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

$\text{Restructure}(A, y)$

| 12 | 4 | 6 | 17 | 9 | 23 | 27 | 40 |

$\text{Restructure}(A, y)$

Number of elements on each side depend on the value y...
A after \(\text{Restructure}(A, y) \)

Number of elements in this range = \(i_y \)

- **What's the \(k \)-th smallest element of \(A \)?**
 - If \(k = i_y \) then \(y \)
 - If \(k < i_y \) then the \(k \)th smallest in \(A_L \)
 - If \(k > i_y \) then the \((k - i_y)\)th smallest in \(A_R \)
QuickSelect(k, A[1..n])

if n = 1 then return A[1] // base case

y = A[1] // pick an arbitrary pivot
(AL, AR, iy) = Restructure(A, y)

if k == iy return y
else if k < iy then return QuickSelect(k, AL)
else /* k > iy */ return QuickSelect(k - iy, AR)

Restructure(A[1..n], y)

AL = new array[1..n] // allocate more than enough
AR = new array[1..n] // to avoid need for expansion
nL = 0, nR = 0

for i = 1 .. n
 if A[i] < y then AL[nL++] = A[i]
 else A[i] > y then AR[nR++] = A[i]

return (AL, AR, nL+1) // nL+1 is the new index of y

Precondition: 1 ≤ k ≤ n
OVERLY OPTIMISTIC ANALYSIS ☺

If \(i_y = \frac{n}{2} \), then we recurse on \(\sim \frac{n}{2} \) elements,

If we could always recurse on \(\frac{n}{2} \) elements then

- We would get \(T(n) = T\left(\frac{n}{2}\right) + \Theta(n) \)
- Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0, y > x \) and \(T(n) \in \Theta(n^y) = \Theta(n) \) by the Master theorem.

But we don’t always recurse on \(\frac{n}{2} \) elements!
WORST-CASE ANALYSIS

If we always get $i_y = 1$ and recurse on the right, then

We get $T(n) = T(n - 1) + \Theta(n)$

By the substitution method this is $\Theta(n^2)$

So, sometimes the pivot is good, sometimes it’s bad…

What about the average case?
AVERAGE-CASE ANALYSIS

Definition: we say a pivot y is **good** if $i_y \in \left(\frac{n}{4}, \frac{3n}{4} \right)$

- For any good pivot, we recurse on at most $\frac{3n}{4}$ elements.

- Probability of an arbitrary pivot being **good**: $p = \frac{1}{2}$
PROOF SKETCH

- Since probability of a good pivot is \(\frac{1}{2} \),
- on average, every two recursive calls, we will encounter a good pivot
- Encountering a good pivot reduces problem size to at most \(\frac{3n}{4} \)
- So, problem size is reduced to \(\frac{3n}{4} \) after expected linear work

Average case recurrence: \(T(n) = T\left(\frac{3n}{4}\right) + \Theta(n) \)

- \(T(n) \in \Theta(n) \)
Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase j if the current subarray has size s, where

$$n \left(\frac{3}{4} \right)^{j+1} < s \leq n \left(\frac{3}{4} \right)^j.$$

Let X_j be a random variable that denotes the amount of computation time occurring in phase j. If the pivot is in the middle half of the current subarray, then we transition from phase j to phase $j + 1$. This occurs with probability $1/2$, so the expected number of recursive calls in phase j is 2. The computing time for each recursive call is linear in the size of the current subarray, so $E[X_j] \leq 2cn(3/4)^j$ (where $E[\cdot]$ denotes the expectation of a random variable). The total time of the algorithm is given by $X = \sum_{j \geq 0} X_j$. Therefore

$$E[X] = \sum_{j \geq 0} E[X_j] \leq 2cn \sum_{j \geq 0} (3/4)^j = 8cn \in O(n).$$

This is just for your notes, in case you want to know how you’d do this analysis formally.

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r} \text{ for } |r| < 1.$$

11
We just showed:
- QuickSelect with **average case** runtime in \(O(n) \)

Next up:
- Median-of-medians QuickSelect (MOMQuickSelect)
 - **worst case** runtime in \(O(n) \)

Relies on getting a **good pivot** within \(O(1) \) recursive calls **on average**

Must get a **good pivot** within \(O(1) \) recursive calls **always**

The algorithm we will see picks a **good pivot** in **every** recursive call
HIGH LEVEL ALGORITHM

- Similar to QuickSelect
 - Choose a pivot
 - Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
 - Recursively call MOMQuickSelect on one subarray
- Only difference is **how** we choose the pivot
 - *Always* want to pick a **good pivot**
Example input

A[1...50]:

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 1, 30, 12, 15, 26, 16, 19, 36, 33, 37, 39, 25, 40, 29, 42

<table>
<thead>
<tr>
<th>Group into rows of 5</th>
<th>Find median of each row</th>
<th>Build array of medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 38 6 21 20</td>
<td>11 38 6 21 20</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>17 14 9 7 5</td>
<td>17 14 9 7 5</td>
<td></td>
</tr>
<tr>
<td>8 34 49 47 28</td>
<td>8 34 49 47 28</td>
<td></td>
</tr>
<tr>
<td>18 44 31 46 48</td>
<td>18 44 31 46 48</td>
<td></td>
</tr>
<tr>
<td>27 4 2 50 23</td>
<td>27 4 2 50 23</td>
<td></td>
</tr>
<tr>
<td>45 3 13 43 22</td>
<td>45 3 13 43 22</td>
<td></td>
</tr>
<tr>
<td>10 32 35 41 24</td>
<td>10 32 35 41 24</td>
<td></td>
</tr>
<tr>
<td>1 30 12 15 26</td>
<td>1 30 12 15 26</td>
<td></td>
</tr>
<tr>
<td>16 19 36 33 37</td>
<td>16 19 36 33 37</td>
<td></td>
</tr>
<tr>
<td>39 25 40 29 42</td>
<td>39 25 40 29 42</td>
<td></td>
</tr>
</tbody>
</table>

Time complexity for this step?

Time complexity for this step?

Recursively find the median of these medians: 23

Recursive problem size?
How Good Is the Pivot 23?

Recall: Median of Each Row

<table>
<thead>
<tr>
<th>11</th>
<th>38</th>
<th>6</th>
<th>21</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>49</td>
<td>47</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>44</td>
<td>31</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>13</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>35</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>12</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>36</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
<td>40</td>
<td>29</td>
<td>42</td>
</tr>
</tbody>
</table>

Imagine: Sorting Each Row:

<table>
<thead>
<tr>
<th>6</th>
<th>11</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
</tr>
</tbody>
</table>

Then: Ordering Rows by Medians:

<table>
<thead>
<tr>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>31</td>
<td>44</td>
</tr>
</tbody>
</table>

Elements ≥ 23 is at least 3(6).

This is > 3/10ths of our 50-element input.

So, after restructuring, pivot 23 must have at least 3n/10 elements before and after it.

This is a good pivot!

We recurse on AL or AR, and both have size at most 7n/10.
MOMQuickSelect\((k = 11, n = 14, A) \)

```java
1 MOMQuickSelect(k, n, A)
2     // base case
3     if n <= 14 then sort(A) and return A[k]
4
5     // divide and conquer to find medians
6     r = (n-5) / 10
7     medians[1..(2*r+1)] = new array
8     for i = 1..(2*r+1)
9         B[1..5] = A[(5*(i-1)+1)..<5*i]]
10        sort(B)
11        medians[i] = B[3]
12
13     y = MOMQuickSelect(r+1, 2*r+1, medians)
14
15     // divide and conquer to find rank k
16     (AL, AR, iy) = Restructure(A, y)
17     if k == iy then return y
18     else if k < iy then return MOMQuickSelect(k, iy-1, AL)
19     else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)
```
MOMQuickSelect(k = 11, n = 21, A)

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27

Not considering at most 9 elements

\[r = \left\lfloor \frac{21 - 5}{10} \right\rfloor = 1 \]

\[B \]

Sort(B)

\[
\begin{array}{cccccc}
11 & 38 & 6 & 21 & 20 \\
6 & 11 & 20 & 21 & 38 \\
17 & 14 & 9 & 7 & 5 \\
5 & 7 & 9 & 14 & 17 \\
8 & 34 & 49 & 47 & 28 \\
8 & 28 & 34 & 47 & 49 \\
\end{array}
\]

\[y = \text{MOMQuickSelect}(r+1, 2r+1, \text{medians}) \]

\[y = \text{MOMQuickSelect}(2, 3, [20, 9, 34]) \Rightarrow 20 \]
MOMQuickSelect(k = 11, n = 21, A)

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27

Restructure(A, y = 20) ⇒

| A_L = [11, 6, 17, 14, 9, 7, 5, 8, 18] |
| A_R = [38, 21, 34, 49, 47, 28, 44, 31, 46, 48, 27] |
| $i_y = |A_L| + 1 = 10$ |

$k = 11 > i_y = 10$

$k - i_y = 1$ $n - i_y = 10$

MOMQuickSelect(1, 10, A_R) ⇒ 21
Runtime? (unit cost)

// base case
if n <= 14 then sort(A) and return A[k]

// divide and conquer to find medians
r = (n-5) / 10
medians[1..(2*r+1)] = new array
for i = 1..(2*r+1)
 B[1..5] = A[(5*(i-1)+1)..(5*i)]
 sort(B)
 medians[i] = B[3]
y = MOMQuickSelect(r+1, 2*r+1, medians)

// divide and conquer to find rank k
(AL, AR, iy) = Restructure(A, y)
if k == iy then return y
else if k < iy then return MOMQuickSelect(k, iy-1, AL)
else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)

Rows B ordered by medians

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>14</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
<td>26</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>y</td>
<td>27</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
<td>44</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
<td>44</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

$\leq y$

$\geq y$

Observe $n = 10r + 5$

So problem size shrinks by at least $3(r + 1)$
HOW MUCH DOES THE PROBLEM SHRINK?

• Shrinks by at least $3(r + 1)$
• Problem size $\sim n = 10r + 5$
• Subproblem size $\leq n - Shrink = n - 3(r + 1)$
 $\quad = 10r + 5 - 3r - 3 = 7r + 2$
• Express in terms of n using $r = \left\lfloor \frac{n-5}{10} \right\rfloor$
 \quad Subproblem size $\leq 7 \left\lfloor \frac{n-5}{10} \right\rfloor + 2 \leq 7 \frac{n-5}{10} + 2$
 $\quad = \frac{7n}{10} - 7 \left(\frac{5}{10} \right) + 2 = \frac{7n}{10} - \frac{3}{2} \leq \frac{7n}{10}$
Time complexity

// base case
if n <= 14 then sort(A) and return A[k]

// divide and conquer to find medians
r = (n-5) / 10
medians[1..(2*r+1)] = new array
for i = 1..(2*r+1)
 B[1..5] = A[(5*(i-1)+1)..(5*i)]
 sort(B)
 medians[i] = B[3]

y = MOMQuickSelect(r+1, 2*r+1, medians)

// divide and conquer to find rank k
(AL, AR, iy) = Restructure(A, y)
if k == iy then return y
else if k < iy then return MOMQuickSelect(k, iy-1, AL)
else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)

\[T(n) \in O(n) + T(n/5) + T(7n/10) \text{ if } n \geq 15 \]
\[T(n) \in O(1) \text{ if } n \leq 14 \]
The key fact is that \(1/5 + 7/10 = 9/10 < 1\).

The fact that \(T(n) \in \Theta(n)\) can be proven formally using guess-and-check (induction) or informally using the recursion tree method.

\[
T(n) \in O(n) + T(n/5) + T(7n/10) \quad \text{if } n \geq 15
\]
\[
T(n) \in O(1) \quad \text{if } n \leq 14
\]

\[
\sum_{i=0}^{\infty} n \left(\frac{9}{10}\right)^i = 10n \in \Theta(n)
\]
• Let \(T(n) = c'n + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) \) where \(c' > 0 \)

• Want to prove: \(T(n) = cn \) for some \(c > 0 \)

• Note \(c \) and \(c' \) are independent constants

 ◦ \(c' \) comes from the work at each level of recursion being \(O(n) \)

 ◦ \(c \) is a positive constant we are trying to show exists

• I.H.: Suppose \(\exists c > 0 : T(n') = cn' \) for \(15 \leq n' < n \)

• \(T(n) = c'n + c\frac{n}{5} + c\frac{7n}{10} \) (by inductive hypoth.)

• \(T(n) = cn \) (want this to be true)

• \(\iff c'n + c\frac{n}{5} + c\frac{7n}{10} = cn \) (equivalently)

• \(\iff c' + c\frac{1}{5} + c\frac{7}{10} = c \iff c = 10c' \) (by algebra)