THE SELECTION PROBLEM

- Input: An array \(A \) containing \(n \) distinct integer values, and an integer \(k \) between 1 and \(n \)
- Output: The \(k \)-th smallest integer in \(A \)
- Minimum is a special case where \(k = 1 \)
- Median is a special case where \(k = \frac{n}{2} \)
- Maximum is a special case where \(k = n \)

Simple algorithm for solving selection?

- **Reconstruction** \((A, y) \)

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline
A & 1 & 2 & 3 & \cdots & i_y & \cdots & n \ \\
\hline
A_L & 1 & 2 & 3 & \cdots & i_y \ \\
\hline
A_R & y & \cdots & n \ \\
\hline
\end{array} \]

- Number of elements in this range = \(i_y \)
- **What's the \(k \)-th smallest element of \(A_L \)?**
 - If \(k = i_y \), then \(y \)
 - If \(k < i_y \), then the \(k \)-th smallest in \(A_L \)
 - If \(k > i_y \), then the \((k - i_y)\)-th smallest in \(A_R \)

Recursive calls

Suppose we choose a pivot element \(y \) in the array \(A \), and we **restructure** \(A \) so that all elements less than \(y \) precede \(y \) in \(A \), and all elements greater than \(y \) occur after \(y \) in \(A \). (This is exactly what is done in **QuickSort**, and it takes linear time.)

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline
A & 12 & 4 & 6 & 27 & 23 & 17 & 40 & 9 \ \\
\hline
\end{array} \]

Restructure \((A, y) \)

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline
A & 12 & 4 & 6 & 27 & 23 & 17 & 40 & 9 \ \\
\hline
\end{array} \]

Number of elements on each side depend on the value \(y \).

Recursive calls

- Number of elements in this range = \(i_y \)
- **What's the \(k \)-th smallest element of \(A_L \)?**
 - If \(k = i_y \), then \(y \)
 - If \(k < i_y \), then the \(k \)-th smallest in \(A_L \)
 - If \(k > i_y \), then the \((k - i_y)\)-th smallest in \(A_R \)

Precondition: \(1 \leq k \leq n \)

```python
1. QuickSelect(A, 1, n)      # base case
2. if n == 1 then return A[1] # if n = 1 then return A[1]
3. y = A[1]                 # pick an arbitrary pivot
4. (A_L, A_R, i_y) = Restructure(A, y)
5. if k == i_y then return y # if k = i_y, then return y
6. if k < i_y then return QuickSelect(A_L, 1, i_y) # if k < i_y, then return QuickSelect(A_L, 1, i_y)
7. if k > i_y then return QuickSelect(A_R, i_y + 1, n) # if k > i_y, then return QuickSelect(A_R, i_y + 1, n)
8. Restructure(A_L, i_y, y)  # allocate more than enough
9. A_R = new array(1, n)    # to avoid need for expansion
10. nL = 0, nR = 0
11. for i = 1..n
14. return (A_L, A_R, nL+1) # nL+1 is the new index of y
```
OVERLY OPTIMISTIC ANALYSIS 😊

If \(i_y = \frac{n}{2} \), then we recurse on \(\frac{n}{2} \) elements.
- If we could always recurse on \(\frac{n}{2} \) elements then
 - We would get \(T(n) = T\left(\frac{n}{2}\right) + \Theta(n) \)
 - Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0 \), \(y > x \) and \(T(n) \in \Theta(n^2) \) by the Master theorem.

But we don't always recurse on \(\frac{n}{2} \) elements!

WORST-CASE ANALYSIS

- If we always get \(i_y = 1 \) and recurse on the right, then
 - We get \(T(n) = T(n-1) + \Theta(n) \)
 - By the substitution method this is \(\Theta(n^2) \)
 - So, sometimes the pivot is good, sometimes it's bad...
 - What about the average case?

AVERAGE-CASE ANALYSIS

Definition: we say a pivot \(y \) is good if \(i_y \in \left[\frac{3n}{4}, \frac{3n}{2}\right] \)

For any good pivot
- we recurse on at most \(\frac{3n}{4} \) elements
- Probability of an arbitrary pivot being good? \(\frac{1}{2} \)

PROOF SKETCH

Since probability of a good pivot is \(\frac{1}{2} \),
- on average, every two recursive calls, we will encounter a good pivot
- Encountering a good pivot reduces problem size to at most \(\frac{3n}{4} \)
- So, problem size is reduced to \(\frac{3n}{4} \) after expected linear work
- Average case recurrence: \(T(n) = T\left(\frac{n}{4}\right) + \Theta(n) \)
 \(T(n) \in \Theta(n) \)

TAKING SELECTION FURTHER

We just showed: QuickSelect with average case runtime in \(\Theta(n) \)
Next up:
- Median-of-medians QuickSelect (MOMQuickSelect) word case runtime in \(\Theta(n) \)
- The algorithm we will use picks a good pivot in every recursive call
- Must get a good pivot within \(\Theta(n) \) recursive calls always
- Relies on getting a good pivot within \(\Theta(n) \) recursive calls on average
HIGH LEVEL ALGORITHM

- Similar to QuickSelect
 - Choose a pivot
 - Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
 - Recursively call MOMQuickSelect on one subarray
- Only difference is how we choose the pivot
 - Always want to pick a good pivot

HOW GOOD IS THE PIVOT 23?

<table>
<thead>
<tr>
<th>Recall median of each row</th>
<th>Imagine sorting each row</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 38 22 20 19 17 21 14</td>
<td>13 17 19 20 21 22 23 24</td>
</tr>
<tr>
<td>11 34 9 7 5 3 2 1</td>
<td>11 1 2 3 5 7 9 13</td>
</tr>
<tr>
<td>8 34 49 47 28</td>
<td>8 28 34 47 49</td>
</tr>
<tr>
<td>18 44 31 44 48</td>
<td>18 31 44 48 44</td>
</tr>
<tr>
<td>24 4 2 50 23</td>
<td>24 2 4 23 50</td>
</tr>
<tr>
<td>10 32 35 41 24</td>
<td>10 24 32 35 41</td>
</tr>
<tr>
<td>1 50 12 12 28</td>
<td>1 12 12 28 50</td>
</tr>
<tr>
<td>19 36 33 31</td>
<td>19 31 33 36</td>
</tr>
<tr>
<td>25 40 20 40 40</td>
<td>25 20 40 40 40</td>
</tr>
</tbody>
</table>

elements ≤ 23 is at least 31.5. This is at least 1/20th of our 50-element input, or 3/10th.

So, after restructuring, pivot 23 must have at least 3/10ths of our 50 elements before and after it.

We recurse on A_1 or A_2, and both have size at most 7.5.

ALWAYS PICKING A GOOD PIVOT

Example input:

```
11, 38, 6, 21, 20, 19, 17, 5, 8, 34, 49, 47, 28, 18, 44, 31, 44, 48, 19, 44, 31, 44, 48, 17, 19, 36, 33, 37, 10, 24, 32, 35, 41, 24, 50, 23, 40, 27, 4, 2, 50, 23, 10, 32, 35, 41, 24, 16, 19, 36, 33, 37, 15, 23, 38, 20, 40, 40, 40
```

Group into rows of 5

<table>
<thead>
<tr>
<th>Find median of each row</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 38 6 21 20</td>
</tr>
<tr>
<td>12 14 9 7 5</td>
</tr>
<tr>
<td>8 34 49 47 28</td>
</tr>
<tr>
<td>18 44 31 44 48</td>
</tr>
<tr>
<td>24 4 2 50 23</td>
</tr>
<tr>
<td>10 32 35 41 24</td>
</tr>
<tr>
<td>16 19 36 33 37</td>
</tr>
<tr>
<td>15 23 38 20 40</td>
</tr>
</tbody>
</table>

Time complexity for this step:

<table>
<thead>
<tr>
<th>Build array of medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 38 6 21 20</td>
</tr>
<tr>
<td>12 14 9 7 5</td>
</tr>
<tr>
<td>8 34 49 47 28</td>
</tr>
<tr>
<td>18 44 31 44 48</td>
</tr>
<tr>
<td>24 4 2 50 23</td>
</tr>
<tr>
<td>10 32 35 41 24</td>
</tr>
<tr>
<td>16 19 36 33 37</td>
</tr>
<tr>
<td>15 23 38 20 40</td>
</tr>
</tbody>
</table>

Time complexity for this step:

Recursive finding medians of these medians: 23

Recursive pruning used
How much does the problem shrink?

- Shrinks by at least 3(r + 1)
- Problem size = n = 10r + 5
- Subproblem size = n – Shrink = n – 3(r + 1) = 10r + 5 – 3r – 3 = 7r + 2
- Express in terms of n using r = \[\frac{n-5}{10} \]
 Subproblem size ≤ 7 \[\frac{n-5}{10} \] + 2 ≤ \[\frac{n-5}{10} \] + 2
 = \[\frac{2n}{10} - \frac{7}{10} \] + 2 = \[\frac{2n}{10} - \frac{3}{10} \]

Time complexity

Let \(T(n) = c'n + \frac{T(n/5)}{5} + \frac{T(7n/10)}{10} \) where \(c' > 0 \)

Want to prove: \(T(n) = cn \) for some \(c > 0 \)

Note \(c \) and \(c' \) are independent constants
- \(c' \) comes from the work at each level of recursion being \(O(n) \)
- \(c \) is a positive constant we are trying to show exists

I.H.: Suppose \(3c > 0 \) : \(T(n') = cn' \) for \(15 \leq n' < n \)

\[T(n) = c'n + \frac{c'n}{5} + \frac{7n}{10} \] (by inductive hypoth.)

\[T(n) = cn \] (want this to be true)

\[\Leftrightarrow c'n + \frac{c'n}{5} + \frac{7n}{10} = cn \] (equivalently)

\[\Leftrightarrow c' + \frac{c'}{5} + \frac{7}{10} = c \Leftrightarrow c = 10c' \] (by algebra)