DIVIDE-AND-CONQUER DESIGN STRATEGY

- **divide:** Given a problem instance I, construct one or more smaller problem instances $I_1, ..., I_a$
 - These are called **subproblems**
 - Usually, want subproblems to be small compared to the size of I (e.g., half the size)
- **conquer:** For $1 \leq j \leq a$, solve instance I_j recursively, obtaining solutions $S_{I_1}, ..., S_{I_a}$
- **combine:** Given solutions $S_{I_1}, ..., S_{I_a}$, use an appropriate combining function to find the solution S to the problem instance I
 - i.e., $S = \text{Combine}(S_{I_1}, ..., S_{I_a})$.

D&C PROTO-ALGORITHM

```
DnC_template(I)

- if BaseCase(I) return Result(I)
- subproblems = $[I_1, I_2, ..., I_a]$
- subproblems = []
- for j = 1, ..., a
    - subproblems[j] = DnC_template(I_j)
- return Combine(subproblems)
```

CORRECTNESS

- Prove base cases are correct
- Inductively assume subproblems are solved correctly
- Show they are correctly assembled into a solution

RUNTIME/SPACE COMPLEXITY?

- Techniques covered in this lecture
 - Model complexities using recurrence relations
 - Solve with substitution, master theorem, etc.
WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of n integers, which we want to sort in increasing order. The size of the problem instance is n.

Divide: Split A into two subarrays, A_L consists of the first [$\lceil n/2 \rceil$] elements in A and A_R consists of the last [$\lceil n/2 \rceil$] elements in A.

Conquer: Run Mergesort on A_L and A_R.

Combine: After A_L and A_R have been sorted, use a function $Merge$ to merge A_L and A_R into a single sorted array. Recall that this can be done in time $\Theta(n)$ with a single pass through A_L and A_R. We simply keep track of the "current" element of A_L and A_R, always copying the smaller one into the sorted array.

MERGE: CONQUER AND COMBINE

PSEUDOCODE FOR MERGESORT

```
1. Mergesort(A[1..n])
2. if n == 1 then return A
3. nL = ceil(n/2)
4. aL = A[1..nL]
5. aR = A[(nL+1) .. n]
6. sL = Mergesort(aL)
7. aR = Mergesort(aR)
8. return Merge(sL, aR)
```

PSEUDOCODE FOR MERGE

```
1. Merge(A[1..nL], aR[1..nr]):
2. Out[1..(nL+nr)] = empty array
3. if A[1L] < aR[1R]
4. while iL < nL and iR < nr
5. if A[1L] < aR[1R]
7. iL++
8. else
9. Out[iOut++] = aR[1R]
10. iR++
11. while iL < nL
13. iL++
14. while iR < nr
15. Out[iOut++] = aR[1R]
16. iR++
17. out = Out
```

There are still elements left in both arrays

Right array is out of elements

Left array is out of elements
ANALYSIS OF MERGESORT

1. MergeSort(A[1..n])
2. if n == 1 then return A
3. nl = cell(n/2) <= O(1)
4. ar = A[(nL+1)\ldots n] <= O(n)
5. sl = MergeSort(nl)
6. sr = MergeSort(ar)
7. return Merge(sl, sr) <= O(n)

So, MergeSort(A) takes O(n) time, plus the time for its two recursive calls.

How can we analyze this recursive program structure?

RECURSIVE RELATIONS

A crucial analysis tool for recursive algorithms

RECURSIVE RELATIONS

Suppose a_1, a_2, \ldots is an infinite sequence of real numbers.
A recurrence relation is a formula that expresses a general term a_n, in terms of one or more previous terms a_1, \ldots, a_{n-1}.
A recurrence relation will also specify one or more initial values starting at a_1.
Solving a recurrence relation means finding a formula for a_n that does not involve any previous terms a_1, \ldots, a_{n-1}.

There are many methods of solving recurrence relations. Two important methods are guess and check and the recursion tree method.

MATHEMATICALLY EXPRESSING THE COMPLEXITY OF MERGESORT

Let $T(n)$ denote the time to run MergeSort on an array of length n.

- conquer takes time $T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor)$
- combine takes time $\Theta(n)$

Recurrence relation:

$$T(n) = \begin{cases} T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rceil) + \Theta(n) & \text{if } n > 1 \\ \Theta(1) & \text{if } n = 1. \end{cases}$$

$T(n)$ is a function of $T(\cdot)$ so T is a recurrence relation

How can we compute/solve for $T(n)$?

Can also compute using a table...

RECURSION TREE METHOD

Evaluating recurrences with $T(n/4)$ terms

Recursion tree

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>cn</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$c(n/2)$</td>
<td>$2c(n/2) = cn$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$c(n/4)$</td>
<td>$4c(n/4) = cn$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\log n$</td>
<td>n</td>
<td>$c(n) = c$</td>
<td>$nc(n/n) = cn$</td>
</tr>
</tbody>
</table>

Total = $cn \times \#\text{levels}$

So, MergeSort has runtime $O(n \log n)$

Can also compute using a table...
RECURSION TREE METHOD FORMALIZED

Sample recurrence for two recursive calls on problem size $n/2$:

$$T(n) = \begin{cases}
2T(\frac{n}{2}) + cn & \text{if } n > 1 \text{ is a power of } 2 \\
\frac{n}{2} + d & \text{if } n = 1
\end{cases}$$

where c and d are constants.

We can solve this recurrence relation when n is a power of two, by constructing a recursion tree, as follows:

Step 1: Start with a root node, say N, having the value $T(n)$.

Step 2: Grow two children of N. These children, say N_1 and N_2, have the value $T(n/2)$, and the value of N is replaced by cn.

Step 3: Repeat this process recursively, terminating when a node receives the value $T(1) = d$.

Step 4: Sum the values on each level of the tree, and then compute the sum of all these that the result is $T(n)$.

GUESS-AND-CHECK METHOD

In Math, I use the **Guess & Hope Method**

- **Suppose** we have the following recurrence:

 \[
 T(0) = 4; \quad T(n) = T(n-1) + 6n - 5
 \]

- **Guess** the form of the solution *any way you like*

- **My approach:** the substitution method
 - Recursively substitute the formula into itself
 - Try to identify patterns to guess the final closed form

 Prove that the guess was correct

SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence:

\[
T(0) = 4; \quad T(n) = T(n-1) + 6n - 5
\]

• \(T(n) = T(n-2) + 6(n - 1) - 5 + 6n - 5\) (substitute)

 - \(= T(n-2) + 6n - 6 - 5 + 6n - 5\)

 - \(= T(n - 3) + 6(n - 2) - 5 + 2(6n - 5) - 6\) (substitute)

 - \(= T(n - 3) + 6n - 2(6) - 5 + 2(6n - 5) - 6\)

 - \(= T(n - 3) + 3(6n - 5) - 6(1 + 2)\)

...Identify patterns and guess what happens in the limit

• \(T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1)) = guess(n)\)

\[\begin{array}{c}
guess(n) = T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1)) \\
= 4 + 6n^2 - 5n - 6n(n - 1)/2 \quad \text{(simplify)}
\end{array}\]

• Are we done?

- The form of guess(n) was an educated guess.
- To be formal, we must prove it correct using induction

PROOF

- **Recall:** \(T(0) = 4; T(n) = T(n-1) + 6n - 5; guess(n) = 3n^2 - 2n + 4\)

- **Want to prove:** \(guess(n) = T(n)\) for all n

- **Base case:** \(guess(0) = 3(0)^2 - 2(0) + 4 = T(0)\)

- **Inductive case:** suppose \(guess(n) = T(n)\) for $n \geq 0$.
 show \(guess(n+1) = T(n+1)\).

\[
\begin{align*}
T(n+1) &= T(n) + 6(n + 1) - 5 \\
&= guess(n) + 6(n + 1) - 5 \\
&= 3n^2 + 4n + 5 \\
\text{(by definition)}
&= 3(n + 1)^2 - 2(n + 1) + 4 \quad \text{(by inductive hypothesis)}
&= 3(n + 1)^2 + 4 + 5 \\
\text{(substitute & simplify)}
&= T(n + 1) \quad \text{(by definition)}
\end{align*}
\]

ANOTHER APPROACH

- **Suppose** you look for a while at the previous recurrence:

 \[
 T(0) = 4; \quad T(n) = T(n-1) + 6n - 5
 \]

- **With some experience, you might just guess** it’s quadratic

 If you’re right, it should have the form:

 \[
 an^2 + bn + c \quad \text{for some unknown constants } a, b, c
 \]

 So, just carry the unknown constants into the proof!

- You can then determine what the constants must be for the proof to work out
• \(T(0) = 4; T(n) = T(n-1) + 6n - 5 \); guess\((n) = an^2 + bn + c \)
• Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)
• Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)
• this holds if \(c = 4 \) \((a, b) \) are not constrained
• Inductive case: \(\text{suppose} \) \(\text{guess}(n) = T(n) \) for \(n \geq 0 \),
 \(\text{show} \) \(\text{guess}(n+1) = T(n+1) \).

\(T(n+1) = T(n) + 6(n+1) - 5 \) \(\text{(by definition)} \)
\(= \text{guess}(n) + 6(n+1) - 5 \) \(\text{(by inductive hypothesis)} \)
\(= an^2 + bn + 4 + 6(n+1) - 5 \) \(\text{(substitute)} \)
\(= an^2 + (b+6)n + 5 \) \(\text{(simplify)} \)

- Recall: \(\text{guess}(n) = an^2 + bn + c \) where \(c = 4 \)
- Inductive case: \(\text{suppose} \) \(\text{guess}(n) = T(n) \) for \(n \geq 0 \),
 \(\text{show} \) \(\text{guess}(n+1) = T(n+1) \).

\(T(n+1) = an^2 + (b+6)n + 5 \) \(\text{(continue previous slide)} \)
\(\text{guess}(n+1) = a(n+1)^2 + b(n+1) + 4 \) \(\text{(by definition)} \)
\(= an^2 + 2bn + 1 + bn + b + 4 \) \(\text{(simplify, and...)} \)
\(= an^2 + (2a + b)n + (a + b + 4) \) \(\text{(rearrange polynomial)} \)

We want this to be equal to \(T(n+1) \)
\(an^2 + (2a + b)n + (a + b) + 4 = an^2 + (b + 6)n + 5 \)
\(\text{equivalent to} \ (2a + b) = (b + 6) \) and \((a + b + 4) = 5 \)
\(\text{first implies} \ a = 3 \) \(\text{plug a into second to get} \ b = 5 - 4 - 3 = -2 \)

MASTER THEOREM FOR RECURRENCES

- Provides a formula for solving many recurrence relations
- We start with a simplified version
- Consider recurrence: \(T(1) = d; T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^p) \)
 where \(a \geq 1, b \geq 2 \) and \(n \) is a power of \(b \) \(\text{(i.e.,} \ n = b^j \text{for integer} j \text{)} \)

REARRANGING

- \(T(n) = da + \sum_{i=0}^{\log_b n} ca^i \left(\frac{n}{b}\right)^i \)
- \(= da + \sum_{i=0}^{\log_b n} ca^i \left(\frac{a^i}{a^i}\right) \)
- \(= da + \sum_{i=0}^{\log_b n} ca^i \left(\frac{a}{a}\right)^i \)
- \(= da + \sum_{i=0}^{\log_b n} ca^i a^i \left(\frac{a}{1}\right)^i \)
- \(= da + \sum_{i=0}^{\log_b n} ca^i \left(\frac{a}{1}\right)^i \)
- \(= da + \sum_{i=0}^{\log_b n} c \left(\frac{a}{1}\right)^i \)
- \(= da + cn \sum_{i=0}^{\log_b n} \left(\frac{a}{1}\right)^i \)
- \(\text{Let} \ x = \log_b a \)
- \(x \text{relates} \# \text{of subproblems to their size} \)
- Rearranging we have \(b^x = a \)
- \(\text{So} \ T(n) = da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
- \(= da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
- \(= da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
- \(= da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
- \(= da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
- \(\text{So} \ T(n) = da + cn \sum_{i=0}^{x} \left(\frac{a}{1}\right)^i \)
 where \(r = b^{x-y} \)

SOLVING THE GEOMETRIC SEQ

- \(T(n) = dn^x + cn^y \sum_{i=0}^{x-1} \left(\frac{a}{1}\right)^i \text{where} \ r = b^{x-y} \)
- \(\text{Recall formula:} \
 \sum_{i=0}^{x-1} \left(\frac{a}{1}\right)^i = \frac{\left(\frac{a}{1}\right)^x - 1}{\frac{a}{1} - 1} \text{if} \ r > 1 \)
 \(= \frac{\left(\frac{a}{1}\right)^x - 1}{\frac{a}{1} - 1} \text{if} \ r = 1 \)
 \(= \frac{\left(\frac{a}{1}\right)^x - 1}{\frac{a}{1} - 1} \text{if} \ 0 < r < 1 \)
- \(\text{So different solutions depending on} \ r \)
 \(\text{Case 1:} \ r = b^{x-y} > 1 \ \iff \ x - y > 0 \ \iff \ x > y \)
 \(\text{Case 2:} \ r = b^{x-y} = 1 \ \iff \ x - y = 0 \ \iff \ x = y \)
 \(\text{Case 3:} \ 0 < r = b^{x-y} < 1 \ \iff \ x - y < 0 \ \iff \ x < y \)

Let’s rearrange this into a geometric sequence and solve

Example corresponding algorithm

```
1 node
Problem size
1
subproblems = []
for i = 1..x:
  let x = subproblem of size n/b
  return combine in n^y time
return solution
```
SOLVING THE GEOMETRIC SEQ

- Formula: \[\sum_{i=0}^{\infty} ar^i = \begin{cases} \frac{a}{1-r} & \text{if } r > 1 \\ na & \text{if } r = 1 \\ a \frac{1-r^n}{1-r} & \text{if } 0 < r < 1 \end{cases} \]

- Case 1: \(r = b^{x-y} > 1 \) \(\iff \) \(x - y > 0 \) \(\iff \) \(x > y \)
 - \(T(n) = dn^2 + cn^2 \sum_{i=0}^{n-1} r^i \in dn^2 + cn^2 \Theta(r^n) \)
 - \(T(n) \in \Theta(n^2 + n^2, (b^{x-y})) = \Theta(n^2 + n^2, (b^{x-y})) \)
 - Recall \(b^i = n \), so \(T(n) \in \Theta(n^2 + n^2 \times b^{x-y}) \)
 - So \(T(n) \in \Theta(n^2) \)

- Case 2: \(r = b^{x-y} = 1 \) \(\iff \) \(x - y = 0 \) \(\iff \) \(x = y \)
 - \(T(n) = dn^2 + cn^2 \sum_{i=0}^{n-1} r^i \in dn^2 + cn^2 \Theta(1) \)
 - \(T(n) \in \Theta(n^2 + n^2) \)
 - Recall \(b^i = n \), so \(T(n) = \Theta(n^2 + n^2 \log n) = A(n^2 \log n) \)
 - So \(T(n) = \Theta(n^2 + n^2 \log n) = \Theta(n^2 \log n) \)

SOLVING THE GEOMETRIC SEQ

- Formula: \[\sum_{i=0}^{\infty} ar^i = \begin{cases} \frac{a}{1-r} & \text{if } r > 1 \\ na & \text{if } r = 1 \\ a \frac{1-r^n}{1-r} & \text{if } 0 < r < 1 \end{cases} \]

- Case 3: \(0 < r = b^{x-y} < 1 \) \(\iff \) \(x - y < 0 \) \(\iff \) \(x < y \)
 - \(T(n) = dn^2 + cn^2 \sum_{i=0}^{n-1} r^i \in dn^2 + cn^2 \Theta(1) \)
 - \(T(n) \in \Theta(n^2 + n^2) \)
 - Since \(x < y \), we simply have \(T(n) \in \Theta(n^2) \)

Note that the base case constant \(d \) is not present in any of these complexities!

MASTER THEOREM FOR RECURRENCES

- Simplified version
 Consider recurrence:
 \[T(n) = aT \left(\frac{n}{b} \right) + \Theta(n^y) \] where \(a \geq 1, b \geq 2 \) and \(n = b^i \)
 And let \(x = \log_b a \).

\[
T(n) = \begin{cases} \Theta(n^x) & \text{if } y < x \\ \Theta(n^x \log n) & \text{if } y = x \\ \Theta(n^y) & \text{if } y > x \end{cases}
\]

WORKED EXAMPLES

Recall: simplified master theorem
Suppose that \(a \geq 1 \) and \(b > 1 \). Consider the recurrence
\[T(n) = aT \left(\frac{n}{b} \right) + \Theta(n^y) \] where \(n \) is a power of \(b \).
Denote \(x = \log_b a \). Then
\[T(n) = \begin{cases} \Theta(n^x) & \text{if } y < x \\ \Theta(n^x \log n) & \text{if } y = x \\ \Theta(n^y) & \text{if } y > x \end{cases} \]

Questions:
- \(a = _ \) \(b = _ \) \(y = _ \) \(x = _ \)
 which \(\Theta \) function?

\[T(n) = 2T(n/2) + cn. \]
\[T(n) = 3T(n/2) + cn. \]
\[T(n) = 4T(n/2) + cn. \]
\[T(n) = 5T(n/2) + cn. \]
\[T(n) = 6T(n/2) + cn. \]
GENERAL MASTER THEOREM

Suppose that \(a \geq 1 \) and \(b > 1 \). Consider the recurrence:

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n),
\]

where \(n \) is a power of \(b \). Denote \(\alpha = \log_b a \). Then,

\[
T(n) \leq \begin{cases}
O(n^\alpha) & \text{if } f(n) = O(n^{\alpha}) \text{ for some } \alpha > 0 \\
O(n^{\alpha} \log n) & \text{if } f(n) = \Theta(n^\alpha) \\
O(f(n)) & \text{if } f(n) \text{ is an increasing function of } n \\
\end{cases}
\]

must reason about relationship between \(f(n) \) and \(n^\alpha \).

EXAMPLE RECURRENCE:

\[
T(n) = 3T\left(\frac{n}{4}\right) + n \log n
\]

REVISITING THE RECURSION TREE METHOD

- Some recurrences with complex \(f(n) \) functions (such as \(f(n) = \log n \)) can still be solved "by hand".
- Example: Let \(n = 2^j \); \(T(1) = 1 \); \(T(n) = 2T\left(\frac{n}{2}\right) + n \log n \)

<table>
<thead>
<tr>
<th>level</th>
<th>(j)</th>
<th>(j-1)</th>
<th>(j-2)</th>
<th>(j-3)</th>
<th>(\ldots)</th>
<th>(2^j)</th>
<th>(2^{j-1})</th>
<th>(2^1)</th>
<th>(2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value at each node</td>
<td>(\frac{2^j}{j-1})</td>
<td>(\frac{2^j}{j-2})</td>
<td>(\frac{2^j}{j-3})</td>
<td>(\frac{2^j}{j-4})</td>
<td>(\ldots)</td>
<td>(\frac{2^j}{2^1})</td>
<td>(\frac{2^j}{2^0})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>value of the level</td>
<td>(\frac{2^j}{j-1})</td>
<td>(\frac{2^j}{j-2})</td>
<td>(\frac{2^j}{j-3})</td>
<td>(\frac{2^j}{j-4})</td>
<td>(\ldots)</td>
<td>(\frac{2^j}{2^1})</td>
<td>(\frac{2^j}{2^0})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note \(\log_2 n = j \)

MASTER THEOREM WHEN \(b^{j-1} < n < b^j \)

- \(n/b \) is not always an integer!
- floors/ceilings are hard
- not a geometric sequence
- Suppose we get a \(\Theta \)-bound for \(b^{j-1} < n < b^j \)
 - by instead considering the larger problem size \(b^j \)
 - \(n \log \log n \)
 - \(\Theta \log \log n \)
 - \(\Theta \log n \)

MASTER THEOREM WHEN \(b^{j-1} < n < b^j \)

- \(n/b \) is not always an integer!
- floors/ceilings are hard
- not a geometric sequence
- Suppose we get a \(\Theta \)-bound for \(b^{j-1} < n < b^j \)

Master Theorem

\[
T(n) \begin{cases}
\Theta((bn)^y) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x \\
\end{cases}
\]

- Case 1 (\(y < x \)): \((bn)^x = b^x n^x \) and \(b^x \) is a constant
 - So \(T(n) \in \Theta(n^x) \)
- Case 2 (\(y = x \)): \((bn)^x \log bn = b^x n^x \log b + \log n \)
 - \(T(bn) \in \Theta(b^x n^x \log b + b^x n^x \log n) = \Theta(n^x + n^x \log n) \)
 - So \(T(n) \in \Theta(n^x \log n) \)
- Case 3 (\(y > x \)): \((bn)^y = b^y n^y \)
 - So \(T(n) \in \Theta(n^y) \)

Master Theorem

\[
T(n) \begin{cases}
\Theta((bn)^y) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x \\
\end{cases}
\]

- Case 1 (\(y < x \)): \((bn)^x = b^x n^x \) and \(b^x \) is a constant
 - So \(T(n) \in \Theta(n^x) \)
- Case 2 (\(y = x \)): \((bn)^x \log bn = b^x n^x \log b + \log n \)
 - \(T(bn) \in \Theta(b^x n^x \log b + b^x n^x \log n) = \Theta(n^x + n^x \log n) \)
 - So \(T(n) \in \Theta(n^x \log n) \)
- Case 3 (\(y > x \)): \((bn)^y = b^y n^y \)
 - So \(T(n) \in \Theta(n^y) \)