CS 341: ALGORITHMS
Lecture 4: divide & conquer I
Readings: see website
Trevor Brown (co-taught with Anna Lubiw)
https://www.student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

DIVIDE-AND-CONQUER DESIGN STRATEGY

- **divide**: Given a problem instance \(I \), construct one or more smaller problem instances \(I_1, ..., I_a \).
- These are called **subproblems**.
- Usually, want subproblems to be small compared to the size of \(I \) (e.g., half the size).
- **conquer**: For \(1 \leq j \leq a \), solve instance \(I_j \) recursively, obtaining solutions \(S_1, ..., S_a \).
- **combine**: Given solutions \(S_1, ..., S_a \), use an appropriate combining function to find the solution \(S \) to the problem instance \(I \).
- i.e., \(S = \text{Combine}(S_1, ..., S_a) \).

D&C PROTO-ALGORITHM

```c
D&C_template(I) {
    if BaseCase(I) return Result(I)
    subproblems = \{I_1, I_2, ..., I_a\}
    subsolutions = \{\}
    for j = 1 to a
        subsolutions[j] = D&C_template(I_j)
    return Combine(subsolutions)
}
```

CORRECTNESS

1. **D&C_template(I)** returns the solution to \(I \).
2. **Prove base cases are correct**
3. **Inductively assume subproblems are solved correctly**
4. **Show they are correctly assembled into a solution**

RUNTIME/SPACE COMPLEXITY?

- Techniques covered in this lecture
- Model complexities using recurrence relations
- Solve with substitution, master theorem, etc.
WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array \(A \) of \(n \) integers, which we want to sort in increasing order. The size of the problem instance is \(n \).

divide: Split \(A \) into two subarrays: \(A_L \) consists of the first \(\frac{n}{2} \) elements in \(A \) and \(A_R \) consists of the last \(\frac{n}{2} \) elements in \(A \).

conquer: Run MERGESORT on \(A_L \) and \(A_R \).

combine: After \(A_L \) and \(A_R \) have been sorted, use a function Merge to merge \(A_L \) and \(A_R \) into a single sorted array. Recall that this can be done in time \(\Theta(n) \) with a single pass through \(A_L \) and \(A_R \). We simply keep track of the “current” element of \(A_L \) and \(A_R \), always copying the smaller one into the sorted array.

DIVIDE

MERGE: CONQUER AND COMBINE

MERGE SIMULATION

PSEUDOCODE FOR MERGESORT

```
1 Mergesort(A[1..n])
2   if n == 1 then return A
3   mL = A[1..(n/2)]
4   mR = A[(n/2)+1..n]
5   mL = Mergesort(mL)
6   mR = Mergesort(mR)
7   return Merge(mL, mR)
```

PSEUDOCODE FOR MERGE

```
Merge(A[1..l], B[1..r], out[1..l+r])
   out[1..l+r] = empty array
   L = 1, R = 1
   while L <= l and R <= r
      if mL < mR \( \Rightarrow \) out[L] = mL, mL += 1
         else out[L] = mR, mR += 1
      if mL < l \( \Rightarrow \) out[L] = mL, mL += 1
         else out[L] = mR, mR += 1
      while L < l \( \Rightarrow \) out[L] = mL, mL += 1
         else out[L] = mR, mR += 1
   return out
```
So, MergeSort(A) takes $O(n)$ time plus the time for its two recursive calls.

How can we analyze this recursive program structure?

Recurrence Relations

Suppose a_1, a_2, \ldots is an infinite sequence of real numbers.

A recurrence relation is a formula that expresses a general term a_n in terms of one or more previous terms a_1, \ldots, a_{n-1}.

A recurrence relation will also specify one or more initial values starting at a_1.

Solving a recurrence relation means finding a formula for a_n that does not involve any previous terms a_1, \ldots, a_{n-1}.

There are many methods of solving recurrence relations. Two important methods are **guess and check** and the **recursion tree method**.

Mathematically Expressing the Complexity of MergeSort

Let $T(n)$ denote the time to run MergeSort on an array of length n.

- *divide* takes time $\Theta(n)$.
- *conquer* takes time $T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right)$.
- *combine* takes time $O(n)$.

Recurrence relation:

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + O(n) & \text{if } n > 1 \\ \Theta(1) & \text{if } n = 1 \end{cases}$$

$T(n)$ is a function of $T(___)$ so T is a recurrence relation.

How can we compute/solve for $T(n)$?

To make this easier, assume $n = 2^k$, which lets us ignore floors/ceilings.

Recursion Tree Method

Evaluating recurrences with $T(n/v)$ terms.

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>$c(n)$</td>
<td>$c(n)$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$c(2n/2) = c(n)$</td>
<td>$2c(n/2) = cn$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$c(2n/4) = c(n/2)$</td>
<td>$4c(n/4) = cn$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>log n</td>
<td>n</td>
<td>$c(n/n) = c$</td>
<td>$cn = cn$</td>
</tr>
</tbody>
</table>

Total = $cn + \text{# levels}$

Total = $n \log(n)$

So, mergesort has runtime $\Theta(n \log n)$.

Can also compute using a table.
RECURSION TREE METHOD FORMALIZED

Sample recurrence for two recursive calls on problem size $n/2$:

\[T(n) = \frac{1}{2} T(\frac{n}{2}) + c, \quad \text{if } n > 1 \text{ is a power of 2} \]

\[T(n) = d, \quad \text{if } n = 1. \]

We can solve this recurrence relation when n is a power of two by constructing a recursion tree, as follows:

Step 1. Start with a root node, say N, having the value $T(n)$.

Step 2. Draw two children of N. These children, say N_1 and N_2, have the value $T(n/2)$, and the value of N is replaced by c.

Step 3. Repeat this process recursively, terminating when a node reaches the value $T(1) = d$.

Step 4. Sum the values on each level of the tree, and then compute the sum of all these sums; the result is $T(n)$.

GUESS-AND-CHECK METHOD

In Math, I use the GUESS AND CHECK Method

• Suppose we have the following recurrence:
 \[T(0) = 4; \quad T(n) = T(n-1) + 6n - 5 \]

• Guess the form of the solution any way you like.

• My approach: the substitution method
 • Recursively substitute the formula into itself.
 • Try to identify patterns to guess the final closed form.
 • Prove that the guess was correct.

SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: \[T(0) = 4; \quad T(n) = T(n-1) + 6n - 5 \]

• \[T(n) = T(n-2) + 6(n-1) - 5 + 6n - 5 \]
 \[\text{ (substitute) } \]

 \[= T(n-2) + 2(6n-5) - 6 \]

• \[= T(n-3) + 6n - 5 + 2(6n-5) - 6 \]
 \[\text{ (substitute) } \]

• \[= T(n-3) + 6n - 5 + 2(6n-5) - 6 \]

• \[= T(n-3) + 3(6n-5) - 6(1+2) \]

• \[= T(0) + n(6n-5) - 6(1+2 + \cdots + (n-1)) = \text{guess}(n) \]

WANT TO KNOW?

• \[\text{guess}(n) = T(0) + n(6n-5) - 6(1+2+3+ \cdots + (n-1)) \]

• \[= 4 + 6n^2 - 5n - 6n(n-1)/2 \]
 \[\text{ (simplify) } \]

• \[= 3n^2 - 2n + 4 \]

Are we done?

• The form of \[\text{guess}(n) \] was an educated guess.

To be formal, we must prove it correct using induction.

ANOTHER APPROACH

• Suppose you look for a while at the previous recurrence:
 \[T(0) = 4; \quad T(n) = T(n-1) + 6n - 5 \]

• With some experience, you might just guess it’s quadratic.

• If you’re right, it should have the form:
 \[an^2 + bn + c \]

• So, just carry the unknown constants into the proof.

• You can then determine what the constants must be for the proof to work out.

RECALL:

\[T(0) = 4; \quad T(n) = T(n-1) + 6n - 5 \]

\[\text{guess}(n) = 3n^2 - 2n + 4 \]

WANT TO PROVE:

\[\text{guess}(n) = T(n) \text{ for all n} \]

BASE CASE:

\[\text{guess}(0) = 3(0)^2 - 2(0) + 4 = T(0) \]

INDUCTIVE CASE:

• Suppose \[\text{guess}(n) = T(n) \] for \[n \geq 0 \],

• Show \[\text{guess}(n+1) = T(n+1) \].

• \[T(n+1) = T(n) + 6(n+1) - 5 \] \[\text{ (by definition) } \]

• \[= \text{guess}(n) + 6(n+1) - 5 \] \[\text{ (by inductive hypothesis) } \]

• \[= 3n^2 + 4n + 5 \] \[\text{ (substitute & simplify) } \]

\[\text{guess}(n+1) = 3(n+1)^2 - 2(n+1) + 4 \] \[\text{ (by definition) } \]

\[= 3n^2 + 4n + 5 = T(n+1) \] \[\text{ (simplify) } \]
• \(T(0) = 4; T(n) = T(n-1) + 6n - 5 \), \(\text{guess}(n) = an^2 + bn + c \)

• Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

• Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)

 \(c = 4 \)

 \((a, b) \) are not constrained \)

• Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \) \geq 0.

 show \(\text{guess}(n+1) = T(n+1) \)

• \(T(n+1) = T(n) + 6(n+1) - 5 \)

• \(= \text{guess}(n) + 6(n+1) - 5 \)

• \(= an^2 + bn + 4 + 6n + 1 - 5 \)

• \(= an^2 + (b + 6)n + 5 \)

• \(\text{Recall:} \) \(\text{guess}(n) = an^2 + bn + c \)

• \(c = 4 \)

• \(T(n) = an^2 + (b + 6)n + 5 \)

• \(\text{Inductive hypothesis is correct for } a = 3, b = -2, c = 4 \)

Example corresponding algorithm

```
Lvl 0 = 1
Lvl 1 = a
Lvl 2 = a^2
...
```

Let's rearrange this into a geometric sequence and solve.

```
\[ T(n) = da^0 + \sum_{i=0}^{n} c a^i \]
```

Let's solve for \(T(n) \) as \(n \rightarrow \infty \).
The document contains several mathematical formulas and explanations related to solving geometric sequences and recurrence relations. Here is a transcription of the key points:

Solving the Geometric Seq

- **Case 1:** \(r = b^{y-x} > 1 \Rightarrow x - y > 0 \Rightarrow x > y
 \)
 - \(T(n) = dn^2 + cn \sum_{i=0}^{r-1} r^i \in \Theta(n^2) \)
 - \(T(n) \in \Theta(n^2 + n^2r^r) = \Theta(n^2 + n^2(b^{x-y}-1)) \)
 - Recall \(b^l = n \), so \(T(n) \in \Theta(n^2 + n^2(b^{x-y}-1)) \)
 - So \(T(n) \in \Theta(n^2) \)

- **Case 2:** \(r = b^{y-x} = 1 \Rightarrow x - y = 0 \Rightarrow x = y
 \)
 - \(T(n) = dn^2 + cn \sum_{i=0}^{r-1} r^i \in \Theta(n^2) \)
 - \(T(n) \in \Theta(n^2 + n^2) = \Theta(n^2) \) since \(x = y \)
 - Recall \(b^l = n \), so \(\log_{b} n \).
 - So \(T(n) = \Theta(n^2 + n^2) = \Theta(n^2 \log n) \)

Solving the Geometric Seq

- **Case 3:** \(0 < r = b^{y-x} < 1 \Rightarrow x - y < 0 \Rightarrow x < y
 \)
 - \(T(n) = dn^2 + cn \sum_{i=0}^{r-1} r^i \in \Theta(n^2) \)
 - \(T(n) \in \Theta(n^2 + n^2r^r) \)
 - Since \(x < y \), we simply have \(T(n) \in \Theta(n^2) \)

Some Bonus Intuition for \(r \) Cases

Recall: \(T(n) = dn^2 + cn \sum_{i=0}^{r-1} r^i \) where \(r = b^{y-x} \)

- **Heavy leaves:** \(r > 1 \) and \(y < r \), \(T(n) \in \Theta(n^2) \)
- **Balanced:** \(r = 1 \) and \(y = r \), \(T(n) \in \Theta(n^2 \log n) \)
- **Heavy top:** \(r < 1 \) and \(y > r \), \(T(n) \in \Theta(n^2) \)

Master Theorem for Recurrences

- **Simplified version:**
 Consider recurrence:
 \(T(n) = aT(\frac{n}{b}) + \Theta(n^k) \) where \(a \geq 1 \), \(b \geq 2 \) and \(n = b^l
 \)
 And let \(x = \log_b a \).

 \[T(n) = \begin{cases} \Theta(n^k) & \text{if } y < x \\ \Theta(n^{k(\log n)}) & \text{if } y = x \\ \Theta(n^x) & \text{if } y > x. \end{cases} \]

Worked Examples

- **Recall:** simplified master theorem
- **Suppose that \(a \geq 1 \) and \(b > 1 \). Consider the recurrence
 \(T(n) = aT(\frac{n}{b}) + \Theta(n^k) \), where \(n \) is a power of \(b \).

 Denote \(x = \log_b a \). Then
 \(T(n) \in \begin{cases} \Theta(n^k) & \text{if } y < x \\ \Theta(n^{k(\log n)}) & \text{if } y = x \\ \Theta(n^x) & \text{if } y > x. \end{cases} \)

 Questions:
 - \(a=2 \), \(b=2 \), \(y=1 \), \(x=1 \)

 \(T(n) = 2T(\frac{n}{2}) + n \)

 \(\Theta(n^2 \log n) = \Theta(n \log n) \)

 \(T(n) = 2T(n/2) + \Theta(n) \)

 Questions:
 - \(a=2 \), \(b=2 \), \(y=1 \), \(x=1 \)

 \(T(n) = 2T(n/2) + \Theta(n) \)
GENERAL MASTER THEOREM

Suppose that \(n \geq 1 \) and \(b > 1 \). Consider the recurrence

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n),
\]

where \(b \) is a power of \(b \). Denote \(x = \log_b n \). Then

\[
T(n) \in \begin{cases}
\Theta(n^x) & \text{if } f(n) \in O(n^{x-\epsilon}) \text{ for some } \epsilon > 0 \\
\Theta(n^x \log n) & \text{if } f(n) \in \Theta(n^x) \\
\Theta(f(n)) & \text{if } f(n) / n^{x-\epsilon} \text{ is an increasing function of } n \text{ for some } \epsilon > 0.
\end{cases}
\]

REVISITING THE RECURSION TREE METHOD

Example recurrence:

\[
T(n) = 3T\left(\frac{n}{3}\right) + 7
\]

<table>
<thead>
<tr>
<th>level</th>
<th>nodes</th>
<th>value at each node</th>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j)</td>
<td>(1)</td>
<td>(2^j)</td>
<td>(2^j)</td>
</tr>
<tr>
<td>(j-1)</td>
<td>(2)</td>
<td>(j)2^{j-1})</td>
<td>(j)2^{j-1})</td>
</tr>
<tr>
<td>(j-2)</td>
<td>(2^2)</td>
<td>(j-2)2^{j-2})</td>
<td>(j-2)2^{j-2})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2^1)</td>
<td>(2^1)</td>
<td>(2^1)</td>
</tr>
<tr>
<td>(0)</td>
<td>(2^0)</td>
<td>(1)</td>
<td>(2^0)</td>
</tr>
</tbody>
</table>

REVISITING THE RECURSION TREE METHOD

- Some recurrences with complex \(f(n) \) functions (such as \(f(n) = \log n \)) can still be solved "by hand."

Example: Let \(a = 3 \); \(T(1) = 1 \); \(T(n) = 3T\left(\frac{n}{3}\right) + n \log n \)

MASTER THEOREM WHEN \(b^{1/2} < n < b^j \)

- \(n \) is not always an integer
- Floor/ceilings are hard
- Not a geometric sequence
- Suppose we get a \(\Theta \) bound for \(b^{1/2} < n < b^j \)

\[
\begin{align*}
\Theta((b^j)k^x) & \text{ if } y < x \\
\Theta((b^j)k^x \log b^j) & \text{ if } y = x \\
\Theta((b^j)k^x) & \text{ if } y > x
\end{align*}
\]

MASTER THEOREM WHEN \(b^{1/2} < n < b^j \)

- \(T(n) \leq \Theta((b^j)k^x \log b^j) \)

Case 1 (\(y < x \)): \((b^j)^x = b^{jx} \) and \(b^j \) is a constant

- So \(T(n) \in \Theta((b^j)k^x) \)

Case 2 (\(y = x \)): \((b^j)^x \log b^j = b^{jx} \log b^j + \log b^j \)

- So \(T(n) \in \Theta((b^j)k^x \log b^j) \)

Case 3 (\(y > x \)): \((b^j)^x \log b^j + (b^j)^x \log b^j \)

- So \(T(n) \in \Theta((b^j)k^x \log b^j) \)

Can tackle \(\Omega \) similarly to get \(\Theta \)