CS 341: ALGORITHMS

Lecture 5: divide & conquer II
Readings: see website

Trevor Brown (co-taught with Anna Lubiw)
https://www.student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
PROBLEM: **NON-DOMINATED POINTS**

- A point **dominates** everything to the **southwest**

So, I am a non-dominated point

No other point dominates me
MORE FORMALLY

• Given two points \((x_1, y_1)\) and \((x_2, y_2)\), we say \((x_1, y_1)\) dominates \((x_2, y_2)\) if \(x_1 > x_2\) and \(y_1 > y_2\).

• Input: a set \(S\) of \(n\) points.

• Output: all non-dominated points in \(S\), i.e., all points in \(S\) that are not dominated by any point in \(S\).

What’s an easy (brute force) algorithm for this?
Let's come up with a better algorithm.

BRUTE FORCE ALGORITHM

```
NDPoints(S)
  for p in S
    dominated[p] = false
    for q in S
      if q != p and q.x > p.x and q.y > p.y
        dominated[p] = true
    if not dominated[p]
      print p
```

Running time? $O(n^2)$
Observe that the non-dominated points form a **staircase** and all the other points are “under” this staircase.

The **treads** of the staircase are determined by the \(y \)-co-ordinates of the non-dominated points. The **risers** of the staircase are determined by the \(x \)-co-ordinates of the non-dominated points. The staircase descends from left to right.
Suppose we **pre-sort** the points in S with respect to their x-co-ordinates. This takes time $\Theta(n \log n)$.
PROBLEM DECOMPOSITION

Divide: Let the first \(n/2 \) points be denoted \(S_1 \) and let the last \(n/2 \) points be denoted \(S_2 \).
Conquer: Recursively solve the subproblems defined by the two instances S_1 and S_2.
PROBLEM DECOMPOSITION

Combine: Given the non-dominated points in S_1 and the non-dominated points in S_2, how do we find the non-dominated points in S?

Observe that **no point in S_1 dominates a point in S_2**.

Therefore we only need to eliminate the points in S_1 that are dominated by a point in S_2. It turns out that this can be done in time $O(n)$.
COMBINING TO GET NON-DOMINATED POINTS

• Let \(Q_1, Q_2, \ldots, Q_k \) be the non-dominated points in \(S_1 \)
• Let \(R_1, R_2, \ldots, R_m \) be the non-dominated points in \(S_2 \)

Just need to find **rightmost** \(Q_i \) that is not dominated (that has \(y \)-coordinate \(\geq R_1.y \))

\[
\begin{align*}
S_1 & \quad Q_1 \quad Q_2 \quad \text{delete these points} \\
S_2 & \quad R_1 \quad R_2 \quad R_3 \quad R_4
\end{align*}
\]
NDPoints(S[1..n])
 sort S by x-coord
 recurse(S)

Recurse(S[1..n]) // precondition: S sorted by x
 // base case
 if n == 1 then return S

 // divide
 S1 = S[1..floor(n/2)]
 S2 = S[floor(n/2)+1..n]

 // conquer
 Q[1..q] = Recurse(S1)
 R[1..r] = Recurse(S2)

 // combine
 i = 1
 while i <= q and Q[i].y > R[1].y
 i++

 // postcondition: return sorted by x
 return concat(Q[1..i-1], R)
Running time complexity?

\[T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \]

So total for sort & recursion is \(\Theta(n \log n + T(n)) = \Theta(n \log n) \)

\(\Theta(1) \) or \(\Theta(n) \) depending on data structures... either way doesn't matter
MULTIPRECISION MULTIPLICATION

• Input: two \(k \)-bit positive integers \(X \) and \(Y \)

• With binary representations:
 \[X = [X[k-1], ..., X[0]] \]
 \[Y = [Y[k-1], ..., Y[0]] \]

• Output: The \(2k \)-bit positive integer \(Z = XY \)

• With binary representation: \(Z = [Z[2k-1], ..., Z[0]] \)

Here, we are interested in the bit complexity of algorithms that solve Multiprecision Multiplication, which means that the complexity is expressed as a function of \(k \) (the size of the problem instance is \(2k \) bits).
Brute Force Algorithm

Example

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0</td>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>

Explanation

- **One row per digit of Y**
- **For each row**
 - Copy the \(k \) bits of \(X \)
- **Add the \(k \) rows together**
 - \(\Theta(k) \) binary additions of \(\Theta(k) \) bit numbers
- **Total runtime is \(\Theta(k^2) \) bit operations**
Let X_L be the integer formed by the $k/2$ high-order bits of X and let X_R be the integer formed by the $k/2$ low-order bits of X.

Similarly for Y.

Thus

$X = 2^{k/2}X_L + X_R$ and $Y = 2^{k/2}Y_L + Y_R$.

$k/2$ bit shift!
EXPRESSING k-BIT MULT. AS $k/2$-BIT MULT.

- $X = 2^{k/2}X_L + X_R$ and $Y = 2^{k/2}Y_L + Y_R$
- So $XY = (2^{k/2}X_L + X_R)(2^{k/2}Y_L + Y_R)$
- $= 2^k X_L Y_L + 2^{k/2}(X_L Y_R + X_R Y_L) + X_R Y_R$
- Suggests a D&C approach...
 - **Divide** into four $k/2$-bit multiplication subproblems
 - **Conquer** with recursive calls
 - **Combine** with k-bit addition and bit shifting
```python
DnCMultiply(X, Y, k)
    // base case
    if k == 1 then return [[X[0]*Y[0]]]

    // divide
    XR = X[0..k/2-1]
    XL = X[k/2..k-1]
    YR = Y[0..k/2-1]
    YL = Y[k/2..k-1]

    // conquer
    XLYL = DnCMultiply(XL, YL, k/2)
    XRYR = DnCMultiply(XR, YR, k/2)
    XLYR = DnCMultiply(XL, YR, k/2)
    XRYL = DnCMultiply(XR, YL, k/2)

    // combine
    return (XLYL<<k) + (XLYR+XRYL)<<((k/2) + XRYR
```

Recall: \(XY = 2^k X_L Y_L + 2^{k/2} (X_L Y_R + X_R Y_L) + X_R Y_R \)
DnCMultiply(X, Y, k) \text{\textTheta(1)}
// base case
if k == 1 then return [[X[0]*Y[0]]]

// divide \text{\textTheta(k)}
XR = X[0..k/2-1]
XL = X[k/2..k-1]
YR = Y[0..k/2-1]
YL = Y[k/2..k-1]

// conquer
XLYL = DnCMultiply(XL, YL, k/2)
XRYR = DnCMultiply(XR, YR, k/2)
XLYR = DnCMultiply(XL, YR, k/2)
XRYL = DnCMultiply(XR, YL, k/2)

// combine \text{\textTheta(k)}
return (XLYL<<(k)) + (XLYR+XRYL)<<((k/2)) + XRYR

- Assume \(k = 2^j \) for ease
- \(T(k) = 4T\left(\frac{k}{2}\right) + \Theta(k) \)
- Master theorem says \(T(k) \in \Theta(k^{\log_2 4}) = \Theta(k^2) \)

Same complexity as brute force!
KARATSUBA’S ALGORITHM

• Let’s optimize from four subproblems to three

Recall: \(XY = 2^k X_L Y_L + 2^{k/2} (X_L Y_R + X_R Y_L) + X_R Y_R \)

• Idea: compute \(X_L Y_R + X_R Y_L \) with only one multiplication

• Note \(X_L Y_R + X_R Y_L \) appears in \((X_L + X_R)(Y_L + Y_R)\)

\((X_L + X_R)(Y_L + Y_R) = X_L Y_L + X_L Y_R + X_R Y_L + X_R Y_R \)

• Let \(X_T = X_L + X_R \) and \(Y_T = Y_L + Y_R \)

• Then \(X_L Y_R + X_R Y_L = X_T Y_T - X_L Y_L - X_R Y_R \)

• And the other two terms \(X_L Y_L \) and \(X_R Y_R \) are already in \(XY \)

• So \(XY = 2^k X_L Y_L + 2^{k/2} (X_T Y_T - X_L Y_L - X_R Y_R) + X_R Y_R \)

Only three unique multiplications!
Running time complexity?

\[T(k) = 3T \left(\frac{k}{2} \right) + \Theta(k) \]

Assume \(k = 2^j \) for ease

Master theorem:
- \(a = 3, b = 2, y = 1 \)
- \(x = \log_b a = \log_2 3 \)
- \(T(k) \in \Theta(k^{\log_2 3}) \)
- \(\approx \Theta(k^{1.58}) \)

Input size increase by 10x causes runtime to 38x

Compare to \(\Theta(k^2) \) algo:
10x input causes 100x time
Note that $X_L + X_R$ and $Y_L + Y_R$ could be $(k/2 + 1)$-bit integers. However, computation of Z_3 can be accomplished by multiplying $(k/2)$-bit integers and accounting for carries by extra additions.

Various techniques can be used to handle the case when k is not a power of two. One possible solution is to pad with zeroes on the left. So let m be the smallest power of two that is $\geq k$. The complexity is $\Theta(m \log_2^3)$. Since $m < 2k$ the complexity is $O((2k)^{\log_2^3}) = O(3^k \log_2^3) = O(k^{1.47})$.

There are further improvements known:

- The **Toom-Cook algorithm** splits X and Y into three equal parts and uses five multiplications of $(k/3)$-bit integers. The recurrence is $T(k) = 5T(k/3) + \Theta(k)$, and then $T(k) \in \Theta(k^{\log_3^5}) = \Theta(k^{1.47})$.

- The 1971 **Schonhage-Strassen algorithm** (based on FFT) has complexity $O(n \log n \log \log n)$.

- The 2007 **Furer algorithm** has complexity $O(n \log n 2^{O(\log^* n)})$.

MATRIX MULTIPLICATION

- **Input:** A and B
- **Output:** their product $C=AB$
- **Word-RAM model** (e.g., 64-bit int)
- **Naïve algorithm** for $n \times n$ matrices:
 - For each output cell C_{ij}
 \[C_{ij} = \text{DotProd}(\text{row}_i(A), \text{col}_j(B)^T) \]
 \[= \sum_{k=1}^{n} A_{ik} B_{kj} \]
- **Running time?**
ATTEMPTING A BETTER SOLUTION

• What if we first **partition** the matrix into **sub-matrices**
• Then **divide and conquer** on the **sub-matrices**
• Example of partitioning: 4x4 matrix into four 2x2 matrices

\[
\begin{bmatrix}
 a & b \\
 c & d \\
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & b_{11} & b_{12} \\
 a_{21} & a_{22} & b_{21} & b_{22} \\
 c_{11} & c_{12} & d_{11} & d_{12} \\
 c_{21} & c_{22} & d_{21} & d_{22} \\
\end{bmatrix}
\]
MULTIPLYING PARTITIONED MATRICES

Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \\ c_{11} & c_{12} & d_{11} & d_{12} \\ c_{21} & c_{22} & d_{21} & d_{22} \end{bmatrix} \)

Let \(B = \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} e_{11} & e_{12} & f_{11} & f_{12} \\ e_{21} & e_{22} & f_{21} & f_{22} \\ g_{11} & g_{12} & h_{11} & h_{12} \\ g_{21} & g_{22} & h_{21} & h_{22} \end{bmatrix} \)

Note \(C = AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \) where \(a, b, ..., h \) are matrices
IDENTIFYING SUBPROBLEMS TO SOLVE

\[C = AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} \]

Recall \(ae, bg, \) etc., each represent matrix multiplication!

Can compute \(C \) using 8 matrix multiplications
SIZE OF SUBPROBLEMS & SUBSOLUTIONS

\[AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} = C = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \]

- Suppose \(A, B \) are \(n \times n \) matrices
- For simplicity assume \(n \) is a power of 2
- Then \(a, b, c, d, e, f, g, h, r, s, t, u \) are \(\frac{n}{2} \times \frac{n}{2} \) matrices
- So we compute \(C \) with 8 multiplications of \(\frac{n}{2} \times \frac{n}{2} \) matrices
DnCMatrixMult(A, B, n)

// base case
if n == 1 then return [[A[0][0]*B[0][0]]

// divide
[a,b,c,d] = Partition(A)
[e,f,g,h] = Partition(B)

// conquer
ae = DnCMatrixMult(a, e, n/2)
af = DnCMatrixMult(a, f, n/2)
bg = DnCMatrixMult(b, g, n/2)
bh = DnCMatrixMult(b, h, n/2)

// combine (with *matrix* addition)
return [[ae+bg, af+bh], [ce+dg, cf+dh]]

- \(T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2) \)
- Master theorem
 - \(a = 8, b = 2, y = 2 \)
 - \(x = \log_2 8 = 3 \)
 - \(x > y \) so \(T(n) \in \Theta(n^x) \)
 - \(T(n) \in \Theta(n^3) \)
- Same time as brute force!

Intuition: to get speedup, must reduce the number of subproblems or their size.
\[AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} = C = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \]

Define

\[
\begin{align*}
P_1 &= a(f - h) \\
P_3 &= (c + d)e \\
P_5 &= (a + d)(e + h) \\
P_7 &= (a - c)(e + f).
\end{align*}
\]

\[
\begin{align*}
P_2 &= (a + b)h \\
P_4 &= d(g - e) \\
P_6 &= (b - d)(g + h)
\end{align*}
\]

Each \(P_i \) requires one multiplication

Can combine these \(P_i \) terms with +/- to compute \(r, s, t, u! \)
STRASSEN FAST MATRIX MULTIPLICATION ALGORITHM

\[
AB = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix} =
\begin{bmatrix}
 ae + bg & af + bh \\
 ce + dg & cf + dh
\end{bmatrix} = C = \begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
\]

Define

- \(P_1 = a(f - h)\)
- \(P_3 = (c + d)e\)
- \(P_5 = (a + d)(e + h)\)
- \(P_7 = (a - c)(e + f)\).
- \(P_2 = (a + b)h\)
- \(P_4 = d(g - e)\)
- \(P_6 = (b - d)(g + h)\)

Claim

- \(r = P_5 + P_4 - P_2 + P_6\)
- \(s = P_1 + P_2\)
- \(t = P_3 + P_4\)
- \(u = P_5 + P_1 - P_3 - P_7\)

- As an example, according to Strassen, \(t = P_3 + P_4\)
- Plugging in \(P_3, P_4\), we get \(t = (c + d)e + d(g - e)\)
- This simplifies to \(t = ce + de + dg - de = ce + dg\)
```python
def StrassenMatrixMult(A, B, n):
    # base case
    if n == 1:
        return [[A[0][0]*B[0][0]]]

    # divide
    [a,b,c,d] = Partition(A)
    [e,f,g,h] = Partition(B)

    # conquer
    P1 = StrassenMatrixMult(a, f-h, n/2)
    P2 = StrassenMatrixMult(a+b, h, n/2)
    P3 = StrassenMatrixMult(c+d, e, n/2)
    P4 = StrassenMatrixMult(d, g-e, n/2)
    P5 = StrassenMatrixMult(a+d, e+h, n/2)
    P6 = StrassenMatrixMult(b-d, g+h, n/2)
    P7 = StrassenMatrixMult(a-c, e+f, n/2)

    # combine (with *matrix* addition)
    r = P3 + P4 - P2 + P6
    s = P1 + P2
    t = P3 + P4
    u = P5 + P1 - P3 - P7

    return [[P5+P4-P2+P6, P1+P2],
            [P3+P4, P5+P1-P3-P7]]
```
StrassenMatrixMult(A, B, n)
 // base case
 if n == 1 then return [[A[0][0]*B[0][0]]
 // divide
 [a,b,c,d] = Partition(A)
 [e,f,g,h] = Partition(B)
 // conquer
 P1 = StrassenMatrixMult(a, f-h, n/2)
 P2 = StrassenMatrixMult(a+b, h, n/2)
 P3 = StrassenMatrixMult(c+d, e, n/2)
 P4 = StrassenMatrixMult(d, g-e, n/2)
 P5 = StrassenMatrixMult(a+d, e+h, n/2)
 P6 = StrassenMatrixMult(b-d, g+h, n/2)
 P7 = StrassenMatrixMult(a-c, e+f, n/2)
 // combine (with *matrix* addition)
 return [[P5+P4-P2+P6, P1+P2], [P3+P4, P5+P1-P3-P7]]

Running time complexity?

- $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$
- Master theorem
 - $a = 7, b = 2, y = 2$
 - $x = \log_2 7$
 - $x > y$ so $T(n) \in \Theta(n^x)$
- $T(n) \in \Theta\left(n^{\log_2 7}\right) \approx \Theta(n^{2.81})$
Strassen’s algorithm was improved in 1990 by Coppersmith-Winograd. Their algorithm has complexity $O(n^{2.376})$. Some slight improvements have been found more recently.

How much better is $\Theta(n^{2.81})$ than $\Theta(n^3)$?

Let $n=10,000$

- $n^{2.81} \approx 174$ billion
- $n^3 = 1$ trillion (~6x more)

How much better is $\Theta(n^{2.376})$ than $\Theta(n^3)$?

Let $n=10,000$

- $n^{2.376} \approx 3.2$ billion
- $n^3 = 1$ trillion (~312x)