CS 341: ALGORITHMS
Lecture 5: finishing D&C, greedy algorithms
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2D points
◆ Output: pair p and q s.t. dist(p, q) minimum over all pairs
◆ Break ties arbitrarily
◆ dist(p,q) = (p.x - q.x)^2 + (p.y - q.y)^2

Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

Claim that doesn’t require a proof: closest pair (p, q):
1. (p, q) both in L or
2. (p, q) both in R or
3. One of (p,q) in L and one of (p,q) in R

We call this a spanning pair

Observation 1

◆ Let δ = min (dist(pair_L), dist(pair_R))
◆ Then pair_s (if closest globally) lies in the above 2δ-wide green strip
Q: Why?
Example for Observation 1

Q: Can p be part of a globally closest spanning pair s?
A: No. Everything in R has dist > δ to p.
And we already have a solution with dist = δ.

Observation 2

◆ Say, p (the lowest y valued point in strip) is in pair s
◆ Then the other point can only lie in this δ×δ square.

Q: Why?
Has to be on the opposite side & can’t be > δ higher than p on y axis.

Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the δ×δ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Switching sides might complicate code... Turns out it’s not needed to get good time complexity.

A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
Claim: inner loop performs $O(1)$ iterations!

Points in a δ × δ Square

- Recall δ is the smallest distance between any pair of points that are both in L or both in R.
- Note this square is entirely in L or entirely in R.

So, δ is the smallest distance between any pair of points in this square!

A point in the middle would rule out any other points.

So, most efficient packing of points puts one in each corner (4 total).

If $|S| < 2$ return $-\infty$, $-\infty$, (∞, ∞)

For a particular i, how many j iterations occur?

Notes:

- Points in S \(\Theta(n)\)
- Time complexity? \(\Theta(n \log n)\)
- \(\Theta(1)\)?
- \(\Theta(1)\)?
- \(\Theta(1)\)?

Time complexity (unit cost)

- δ loop performs at most eight iterations
- Each does $\Theta(1)$ work, so entire δ loop does $\Theta(1)$ work!
- So entire δ loop does $\Theta(n)$ work
- So, `findMinSpanningPair` does $\Theta(n \log n)$ work
IMPROVING THIS RESULT FURTHER

IMPROVING THE PREVIOUS ALGORITHM

- Sorting by y-values causes $\text{findMinSpanningPair}$ to take $O(n \log n)$ time instead of $O(n)$ time.
- This happens in each recursive call, and dominates the running time.
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values.
- Assume for simplicity that x coordinates are unique.

Shamos' algorithm (1975)

- This selection step preserves the y-sort order.
- Observe P_L and P_R contain the same points (specifically the points with $x \leq x_{\text{mid}}$).
- Moreover P_L is sorted by x while P_R is sorted by y.
- No need to sort in $\text{Recurs}()$.

Time complexity

- $T(n) = 2T(\frac{n}{2}) + O(n)$
- Merge sort recurrence, $\Omega(n \log n)$
- So runtime for Shamos' algorithm is $\Theta(n \log n)$.
SOLVING OPTIMIZATION PROBLEMS

- Lots of techniques
- We will study greedy approaches first
- Later, dynamic programming
 - Sort of like divide and conquer
 - But can sometimes be much more efficient than D&C
- Greedy algorithms are usually
 - Very fast, but hard to prove optimality for
 - Structured as follows...

The Greedy Method

Partial solutions
- Given a problem instance I, it should be possible to write a feasible solution X as a tuple (x_1, x_2, \ldots, x_n) for some integer n, where $x_i \in X$ for all i. A tuple (x_1, \ldots, x_i) where $i < n$ is a partial solution if no constraints are violated. Note: It may be the case that a partial solution cannot be extended to a feasible solution.

Choice set
- For a partial solution $X = [x_1, \ldots, x_i]$ where $i < n$, we define the choice set

 $$\text{choice}(X) = \{ y \in X : [x_1, \ldots, x_i, y] \text{ is a partial solution} \}.$$

CORE CHARACTERISTICS OF GREEDY ALGORITHMS

- Greedy algorithms do no looking ahead and no backtracking.
- Greedy algorithms can usually be implemented efficiently. Often they consist of a preprocessing step based on the function g, followed by a single pass through the data.
- In a greedy algorithm, only one feasible solution is constructed.
- The execution of a greedy algorithm is based on local criteria (i.e., the values of the function g).
- Correctness: For certain greedy algorithms, it is possible to prove that they always yield optimal solutions. However, these proofs can be tricky and complicated!
PROBLEM: INTERVAL SELECTION

- **Input:** a set $A = (A_1, \ldots, A_n)$ of time intervals
- Each interval A_i has a start time s_i and a finish time f_i
- **Feasible solution:** a subset X of A containing pairwise disjoint intervals
- **Output:** a feasible solution of maximum size
 - i.e., one that maximizes $|X|

POSSIBLE GREEDY STRATEGIES

- **Partial solutions** $X = [x_1, x_2, \ldots, x_i]$ where each x_i is an interval for the output
- **Choices** $X = A$ (i.e., all intervals)
 - $X = Y \in X : [x_1, \ldots, x_i, y]$ respects all constraints
 - i.e., where $y \notin X$ and $y \notin X$ (deletion)
- **Local evaluation function** $g(y) = s_j$ where $y = A[j]$
 - (i.e., $g(y)$ = start time of interval y)

STRATEGY 1: PROVING INCORRECTNESS

- **Idea:** find one input for which the algorithm gives a non-optimal solution or an infeasible solution

HOW ABOUT STRATEGY 2?

We will show that Strategy 3 (sort in increasing order of finishing times) always yields the optimal solution.

STRATEGY 3

- **Local evaluation function** g in this code?
STRATEGY 3

Time complexity: Sort + one pass \(\in \Theta(n \log n) \)

How to prove this is correct?

(i.e., how can we show the returned solution is both feasible and optimal?)

- **Feasibility? Easy!** We always choose an interval that starts after all other chosen intervals end.

- **Optimality? Harder...**

GREEDY CORRECTNESS PROOFS

- Want to prove: greedy solution \(X \) is correct (feasible & optimal)
- Usually show feasibility directly and optimality by contradiction:
 - Suppose solution \(O \) is better than \(X \)
 - Show this necessarily leads to a contradiction
- Two broad strategies for deriving this contradiction:
 1. **Greedy stays ahead:** show every choice in \(X \) is “at least as good” as the corresponding choice in \(O \)
 2. **Exchange:** show \(O \) can be improved by replacing some choice in \(O \) with a choice in \(X \)

Let’s demonstrate approach #1

Lemma 4.2 (Greedy stays ahead)

\(f_i < f_j \) for \(m = 1, 2, \ldots \)

Proof

- **Initial case:** \(m = 1 \). We have \(f_1 \leq f_2 \) since the greedy algorithm begins by choosing \(s_1 \). \(A_1 \) has the earliest finishing time.
- **Induction assumption:** \(f_{i-1} \leq f_{j-1} \). Consider \(A_i \) and \(A_j \). We have \(s_{i-1} \geq f_{i-1} \geq f_{j-1} \) (by I.H.).
- \(f_{i-1} \geq f_{j-1} \) (by I.H.).
- \(A_i \) has the earliest finishing time of any interval that starts after \(f_{i-1} \). Therefore \(f_i \leq f_{i-1} \).

Correctness Proof (cont.)

Recall

Greedy solution is \(X = (A_1, \ldots, A_k) \).

Optimal solution is \(O = (A_{j_1}, \ldots, A_{j_l}) \).

We give an induction proof.

Let \(X \) be the greedy solution,

\[X = (A_{i_1}, \ldots, A_{i_k}) \]

where \(j_1 < \cdots < j_l \).

Let \(O \) be any optimal solution,

\[O = (A_{j_1}, \ldots, A_{j_l}) \]

where \(j_1 < \cdots < j_l \).

We are merely imagining reordering the intervals chosen by the optimal algorithm so we can easily compare their finish times to intervals in \(X \).

We are NOT assuming the optimal algorithm uses the same sort order!

CRUCIAL

- \(i, j \) are subsequences of the sorted intervals
- To obtain a contradiction
 1. \(A_{i_k} \) starts before \(A_{j_1} \) by induction.
 2. \(A_{j_1} \) finishes before \(A_{i_k} \) by lemma.
 3. \(A_{i_k} \) starts after \(A_{j_1} \) finishes.

This completes the proof!
A DIFFERENT PROOF

"Slick" ad-hoc approaches are sometimes possible...

Let \(F = \{ f_1, \ldots, f_n \} \) be the finishing times of the intervals in \(X \).

No interval finishes strictly to the left.

No interval starts strictly to the right.

No interval in \(X \) is strictly between these points!

So, in addition to the intervals in \(X \), only the following types of intervals are possible:

- Contains \(f_i \)
- Contains \(f_j \)
- Contains \(f_i \) and \(f_j \)

Thus, every interval contains some finishing time in \(F \).

And, two intervals in \(F \) cannot contain the same element of \(F \).

So, there must be as many finishing times in \(F \) as there are intervals in \(X \). QED