THE CLOSEST PAIR PROBLEM
THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2D points
◆ Output: pair p and q s.t. dist(p, q) minimum over all pairs
◆ Break ties arbitrarily
◆ dist(p, q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}
Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

L
\[p_2 \]

\[p_1 \]

\[p_4 \]

\[p_7 \]

\[p_6 \]

\[p_5 \]

\[p_8 \]

R

Claim that doesn’t require a proof: closest pair \((p, q)\):

1. \((p, q)\) both in \(L\) or
2. \((p, q)\) both in \(R\) or
3. One of \((p, q)\) in \(L\) and one of \((p, q)\) in \(R\)

We call this a spanning pair
ClosestPair(P[1..n])
 sort(P) by x values
 Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
 // base case
 if n < 4 then compare all pairs and return closest

 // divide & conquer
 pairL = Recurse(P[1..(n/2)])
 pairR = Recurse(P[(n/2)+1..n])

 // combine
 pairS = findMinSpanningPair(P)
 return minDistPair(pairL, pairR, pairS)
Observation 1

◆ Let $\delta = \min (\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R))$

◆ Then pair$_s$ (if closest globally) lies in the above 2δ-wide green strip

Q: Why?
Example for Observation 1

Q: Can p be part of a globally closest spanning pair δ?
A: No. Everything in R has $\text{dist} > \delta$ to p. And we already have a solution with $\text{dist} = \delta$.

Observation 2

◆ Say, p (the lowest y valued point in strip) is in pair s

Q: Why?

◆ Then the other point can only lie in this $\delta \times \delta$ square.

δ

δ

Has to be on the opposite side & can’t be $> \delta$ higher than p on y axis.
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth…
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Switching sides might complicate code... Turns out it’s not needed to get good time complexity.
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times 2\delta$ above rectangle each time
ClosestPair(P[1..n])
 sort(P) by x values
 Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
 // base case
 if n < 4 then compare all pairs and return closest

 // divide & conquer
 pairL = Recurse(P[1..(n/2)])
 pairR = Recurse(P[(n/2)+1..n])

 // combine
 δ = min(dist(pairL), dist(pairR))
 pairS = findMinSpanningPair(P, δ)
 return minDistPair(pairL, pairR, pairS)
Claim: inner loop performs $O(1)$ iterations!
For a particular i, how many j iterations occur?

Obs: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.

```
for i = 1..len(S)
  for j = (i+1)..len(S)
    if S[j].y - S[i].y > \delta then break
```
POINTS IN A $\delta \times \delta$ SQUARE

- Recall δ is the smallest distance between any pair of points that are both in L or both in R
- Note this square is entirely in L or entirely in R

So, δ is the smallest distance between any pair of points in this square!

A point in the middle would rule out any other points

So, most efficient packing of points puts one in each corner (4 total)
For a particular i, how many j iterations occur?

Obs: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.

Can only contain eight points! (technically six)

```
for i = 1..len(S)
    for j = (i+1)..<len(S)
        if S[j].y - S[i].y > \delta then break
```
- \(j \)-loop performs at most **eight** iterations
- Each does \(\Theta(1) \) work, so entire \(j \)-loop does \(\Theta(1) \) work!
- So entire \(i \)-loop does \(\Theta(n) \) work
- So, findMinSpanningPair does \(\Theta(n \log n) \) work
Time complexity (unit cost)

1. ClosestPair(P[1..n])
 - sort(P) by x values
 - Recurse(P)

2. Recurse(P[1..n]) // precondition: P sorted by x
 - if n < 4 then compare all pairs and return closest

3. // divide & conquer
 - pairL = Recurse(P[1..(n/2)])
 - pairR = Recurse(P[(n/2)+1..n])

4. // combine
 - δ = min(dist(pairL), dist(pairR))
 - pairS = findMinSpanningPair(P, δ)
 - return minDistPair(pairL, pairR, pairS)

- \(T'(n) : \text{ClosestPair}(P[1..n]) \)
- \(T(n) : \text{Recurse}(P[1..n]) \)
- \(T'(n) = \Theta(n \log n) + T(n) \)
- \(T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n \log n) \)

Lec2 notes using recursion trees showed:
- \(T(n) \in \Theta(n \log^2 n) \)
- \(T'(n) \in \Theta(n \log n) + \Theta(n \log^2 n) \)
- So \(T'(n) \in \Theta(n \log^2 n) \)
IMPROVING THIS RESULT FURTHER
IMPROVING THE PREVIOUS ALGORITHM

- Sorting by y-values causes `findMinSpanningPair` to take $O(n \log n)$ time instead of $O(n)$ time.
- This happens in each recursive call, and dominates the running time.
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values.
- Assume for simplicity that x coordinates are unique.
ShamosClosestPair(P[1..n])

1. Px = sort(P) by increasing x values
2. Py = sort(P) by increasing y values
3. Recurse(Px, Py)

Recuse(Px[1..n], Py[1..n])

// base case
if n < 4 then return BruteForce(Px)

// divide & conquer
xmid = Px[n/2].x

PxL = Px[1..(n/2)] // x <= xmid
PxR = Px[(n/2+1)..n] // x > xmid

PyL = select p from Py where p.x <= xmid
PyR = select p from Py where p.x > xmid

pairL = Recurse(PxL, PyL)
pairR = Recurse(PxR, PyR)

// combine
\[\delta = \min(\text{dist}(pairL), \text{dist}(pairR)) \]

pairS = findMinSpanningPair(\(\delta \), Py, xmid)
return minDistPair(pairL, pairR, pairS)

Shamos’ algorithm (1975)

This selection step preserves the y-sort order

Observe PxL and PyL contain the same points

(specifically the points with x <= xmid)

Moreover PxL is sorted by x while PyL is sorted by y

And similarly for PxR, PyR... No need to sort in Recurse!
findMinSpanningPair(δ, Py[1..n], xmid) // Py sorted by y

S = { p in Py : abs(xmid - p.x) <= δ }
if |S| < 2 return (−∞, −∞), (∞, ∞)
minPair = (S[1], S[2]) // arbitrary pair to start
for i = 1..len(S)
 for j = (i+1)..len(S)
 if S[j].y - S[i].y > δ then break
 minPair = minDistPair(minPair, (S[i], S[j]))

return minPair

θ(n) and preserves the y-sort order

Total θ(n) for this function
ShamosClosestPair(P[1..n])
 Px = sort(P) by increasing x values
 Py = sort(P) by increasing y values
 Recurse(Px, Py)

Recurse(Px[1..n], Py[1..n])
 // base case
 if n < 4 then return BruteForce(Px)

 // divide & conquer
 xmid = Px[n/2].x
 PxL = Px[1..(n/2)] // x <= xmid
 PxR = Px[(n/2+1)..n] // x > xmid
 PyL = select p from Py where p.x <= xmid
 PyR = select p from Py where p.x > xmid
 pairL = Recurse(PxL, PyL)
 pairR = Recurse(PxR, PyR)

 // combine
 δ = min(dist(pairL), dist(pairR))
 pairS = findMinSpanningPair(δ, Py, xmid)
 return minDistPair(pairL, pairR, pairS)

Time complexity

\[T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \]

Merge sort recurrence...

So runtime for Shamos' algorithm is in \(\Theta(n \log n) \)
GREEDY ALGORITHMS
Optimization Problems

Problem: Given a problem instance, find a feasible solution that maximizes (or minimizes) a certain objective function.

Problem Instance: Input for the specified problem.

Problem Constraints: Requirements that must be satisfied by any feasible solution.

Feasible Solution: For any problem instance I, $\text{feasible}(I)$ is the set of all outputs (i.e., solutions) for the instance I that satisfy the given constraints.

Objective Function: A function $f : \text{feasible}(I) \rightarrow \mathbb{R}^+ \cup \{0\}$. We often think of f as being a profit or a cost function.

Optimal Solution: A feasible solution $X \in \text{feasible}(I)$ such that the profit $f(X)$ is maximized (or the cost $f(X)$ is minimized).

\[f(\text{this point}) = 720 \]
SOLVING OPTIMIZATION PROBLEMS

- Lots of techniques
- We will study **greedy** approaches first
- Later, dynamic programming
 - Sort of like divide and conquer but can **sometimes** be much more efficient than D&C
- Greedy algorithms are usually
 - Very fast, but hard to prove optimality for
 - Structured as follows...
The Greedy Method

partial solutions

Given a problem instance I, it should be possible to write a feasible solution X as a tuple $[x_1, x_2, \ldots, x_n]$ for some integer n, where $x_i \in \mathcal{X}$ for all i. A tuple $[x_1, \ldots, x_i]$ where $i < n$ is a \textbf{partial solution} if no constraints are violated. Note: it may be the case that a partial solution cannot be extended to a feasible solution.

choice set

For a partial solution $X = [x_1, \ldots, x_i]$ where $i < n$, we define the \textbf{choice set}

$$\text{choice}(X) = \{ y \in \mathcal{X} : [x_1, \ldots, x_i, y] \text{ is a partial solution} \}.$$
Local evaluation means we cannot consider future choices when deciding whether to include y in our solution.

extension

Given a partial solution $X = [x_1, \ldots, x_i]$ where $i < n$, choose $y \in \text{choice}(X)$ so that $g(y)$ is as small (or large) as possible. Update X to be the $(i + 1)$-tuple $[x_1, \ldots, x_i, y]$.

greedy algorithm

Starting with the “empty” partial solution, repeatedly extend it until a feasible solution X is constructed. This feasible solution may or may not be optimal.

We choose the next element to include greedily by taking the y that gives the maximum local improvement.

This may or may not be a good idea…
CORE CHARACTERISTICS OF GREEDY ALGORITHMS

Greedy algorithms do no looking ahead and no backtracking. Greedy algorithms can usually be implemented efficiently. Often they consist of a preprocessing step based on the function \(g \), followed by a single pass through the data.

In a greedy algorithm, only one feasible solution is constructed. The execution of a greedy algorithm is based on local criteria (i.e., the values of the function \(g \)).

Correctness: For certain greedy algorithms, it is possible to prove that they always yield optimal solutions. However, these proofs can be tricky and complicated!
PROBLEM: INTERVAL SELECTION

95% CONFIDENCE INTERVAL?

WHY NOT 100% CONFIDENCE?
PROBLEM: INTERVAL SELECTION

- **Input:** a set $A = \{A_1, \ldots, A_n\}$ of time intervals
 - Each interval A_i has a start time s_i and a finish time f_i
- **Feasible solution:** a subset X of A containing pairwise disjoint intervals
- **Output:** a feasible solution of maximum size
 - i.e., one that maximizes $|X|$

Where s_i and f_i are positive integers

Chosen

Rejected

Bad solution. Not optimal!
POSSIBLE GREEDY STRATEGIES

1. Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals.

- **Partial solutions**
 - $X = [x_1, x_2, ..., x_i]$ where each x_i is an interval for the output

- **Choices**
 - $\mathcal{X} = A$ (i.e., all intervals)
 - $\text{Choice}(X) = \{ y \in \mathcal{X} : [x_1, ..., x_i, y] \text{ respects all constraints} \}$
 - i.e., where $y \not\in X$ and $\forall x \in X$ disjoint(y, x)

- **Local evaluation function**
 - $g(y) = s_j$ where $y = A[j]$
 - (i.e., $g(y) =$ start time of interval y)
POSSIBLE GREEDY STRATEGIES FOR INTERVAL SELECTION

1. Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is s_i).

2. Sort the intervals in increasing order of duration. At any stage, choose the interval of minimum duration that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is $f_i - s_i$).

3. Sort the intervals in increasing order of finishing times. At any stage, choose the earliest finishing interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_i).

Does one of these strategies yield a correct greedy algorithm?
STRATEGY 1: PROVING INCORRECTNESS

- **Idea:** find **one input** for which the algorithm gives a **non-optimal solution** or an **infeasible** solution

Sort the intervals in increasing order of **starting times**. At any stage, choose the **earliest starting** interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is s_i).

Consider input: $[0, 10), [1, 3), [5, 7)$.

![Diagram showing intervals and color-coding choices](image)
HOW ABOUT STRATEGY 2?

Consider input:

\[[0, 5), [6, 10), [4, 7)\].

We will show that Strategy 3 (sort in increasing order of finishing times) always yields the optimal solution.
GreedyIntervalSelection(A[1..n])
sort(A) by increasing finish times
X = [A[1]]
prev = 1 // index of last selected interval

for i = 2..n
 if A[i].s >= A[prev].f then
 X.append(A[i])
 prev = i

return X

Where is our local evaluation function \(g \) in this code?
STRATEGY 3

Time complexity:
Sort + one pass
$\in \Theta(n \log n)$

```
GreedyIntervalSelection(A[1..n])
  sort(A) by increasing finish times
  X = [A[1]]
  prev = 1  // index of last selected interval
  for i = 2..n
    if A[i].s >= A[prev].f then
      X.append(A[i])
      prev = i
  return X
```

How to prove this is correct? (I.e., how can we show the returned solution is both **feasible** and **optimal**?)

Feasibility? Easy!
We always choose an interval that **starts** after all other chosen intervals **end**

Optimality? Harder…
BRO I DON'T WANT PROOF

I WANT EVIDENCE
GREEDY CORRECTNESS PROOFS

- Want to prove: greedy solution X is correct (feasible & optimal)
- Usually show feasibility directly and optimality by contradiction:
 - Suppose solution O is better than X
 - Show this necessarily leads to a contradiction
- Two broad strategies for deriving this contradiction:
 1. **Greedy stays ahead:** show every choice in X is “at least as good” as the corresponding choice in O
 2. **Exchange:** show O can be improved by replacing some choice in O with a choice in X

Let’s demonstrate approach #1
We give an induction proof.

Let X be the greedy solution,

$$X = (A_{i_1}, \ldots, A_{i_k}),$$

where $i_1 < \ldots < i_k$.

Let \mathcal{O} be any optimal solution,

$$\mathcal{O} = (A_{j_1}, \ldots, A_{j_\ell}),$$

where $j_1 < \ldots < j_\ell$.

\textbf{CRUCIAL:} We are NOT assuming the optimal \textit{algorithm} uses the same sort order!

We are merely imagining reordering the intervals chosen by the optimal algorithm so we can easily compare their finish times to intervals in X.

\[\text{i.e., } X \text{ is a subsequence of the sorted intervals} \]
Lemma 4.2 (Greedy stays ahead)

\[f_{i_m} \leq f_{j_m} \text{ for } m = 1, 2, \ldots \]

Proof.

Initial case \(m = 1 \). We have \(f_{i_1} \leq f_{j_1} \) since the greedy algorithm begins by choosing \(i_1 = 1 \). (\(A_1 \) has the earliest finishing time.)

Induction assumption: \(f_{i_{m-1}} \leq f_{j_{m-1}} \). Consider \(A_{i_m} \) and \(A_{j_m} \). We have

\[s_{j_m} \geq f_{j_{m-1}} \geq f_{i_{m-1}}. \]

Greedy’s \(m \)-th interval has finishing time \(\leq \) Optimal’s \(m \)-th interval (sorted)

\(A_{i_m} \) has the earliest finishing time of any interval that starts after \(f_{i_{m-1}} \) finishes. Therefore \(f_{i_m} \leq f_{j_m} \). \qed
Correctness Proof (cont.)

Recall

Greedy solution is $X = (A_{i_1}, ..., A_{i_k})$.
Optimal solution is $O = (A_{j_1}, ..., A_{j_\ell})$.

Now we complete the proof.

From the Lemma, we have $f_{i_k} \leq f_{j_k}$.

Suppose that $\ell > k$.

(to obtain a contradiction)

This completes the proof!
A DIFFERENT PROOF

“Slick” ad-hoc approaches are sometimes possible...
Let $F = \{f_{i_1}, \ldots, f_{i_k}\}$ be the finishing times of the intervals in X.

No interval finishes strictly to the left

No interval starts strictly to the right

Would be chosen by greedy! (contradiction)

No interval in is strictly between these points!

So, in addition to the intervals in X, only the following types of intervals are possible

Contains f_{i_1}

Contains f_{i_2}

Contains f_{i_1} and f_{i_2}

Thus, every interval contains some finishing time in F

And, two intervals in O cannot contain the same element of F

So, there must be as many finishing times in F as there are intervals in O. QED