THE SELECTION PROBLEM

- Input: An array A containing n distinct integer values, and an integer k between 1 and n.
- Output: The kth smallest integer in A.
- Minimum is a special case where k = 1.
- Median is a special case where k = \frac{n}{2}.
- Maximum is a special case where k = n.
- Simple algorithm for solving selection?

Restructure (A, y)

12 4 6 27 23 17 40

Recursive calls

A after

Restructure (A, y)

Number of elements in this range = \ell_y

- What's the kth smallest element of A?
 - If k = \ell_y then y
 - If k < \ell_y then the kth smallest in A_1
 - If k > \ell_y then the (k - \ell_y)th smallest in A_R

QuickSelect(k, A[0..n])

if n = 1 then return A[1] // base case

precondition: 1 \leq k \leq n

y = A[1] // pick an arbitrary pivot

if k = y return y

else if k < y then return QuickSelect(k, A_{\ell_y})

else // k > y

return QuickSelect(k - y + 1, A_{\ell_y})
OVERLY OPTIMISTIC ANALYSIS

- \(A \) after Restructure \((A, y)\):
 - If \(i_y = \frac{n}{2} \) then we recurse on \(-\frac{n}{2}\) elements.
 - If we could always recurse on \(\frac{n}{2}\) elements then
 - We would get \(T(n) = T\left(\frac{n}{2}\right) + \Theta(n) \)
 - Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0, y > x \) and \(T(n) \in \Theta(n^2) = \Theta(n) \) by the Master theorem.

WORST-CASE ANALYSIS

- \(A \) after Restructure \((A, y)\):
 - If we always get \(i_y = 1 \) and recurse on the right, then
 - We get \(T(n) = T(n - 1) + \Theta(n) \)
 - By the substitution method this is \(\Theta(n^2) \)
 - So, sometimes the pivot is good, sometimes it's bad...
 - What about the average case?

AVERAGE-CASE ANALYSIS

- Definition: a pivot \(y \) is **good** if \(i_y \in \left(\frac{n}{4}, \frac{3n}{4}\right) \)
 - \(\frac{n}{4} \) elements
 - \(\frac{n}{2} \) elements
 - \(\frac{3n}{4} \) elements

- For any good pivot, we recurse on at most \(\frac{n}{4} \) elements.
- Probability of an arbitrary pivot being good?

Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase \(j \) if the current subarray has size \(x \), where

\[
\frac{1}{4} < x \leq \frac{3}{4} \left(\frac{2}{3}\right)^{j+1}.
\]

Let \(X_j \) be a random variable that denotes the amount of computation time occurring in phase \(j \). If the pivot is in the middle half of the current subarray, then we transition from phase \(j \) to phase \(j + 1 \). This occurs with probability \(\frac{1}{2} \), so the expected number of recursive calls in phase \(j \) is \(\frac{1}{2} \). The computing time for each recursive call is linear in the size of the current subarray, so \(E[X_j] \leq 2n^\alpha(\frac{2}{3})^j \) (where \(E[X] \) denotes the expectation of a random variable). The total time of the algorithm is given by \(X = \sum_{j \geq 1} X_j \). Therefore

\[
E[X] = \sum_{j \geq 1} E[X_j] \leq 2n \sum_{j \geq 1} \left(\frac{2}{3}\right)^{2j} = 8n \in \Theta(n).
\]

TAKING SELECTION FURTHER

- We just showed:
 - QuickSelect with **average case** runtime in \(\Theta(n) \)
- Next up:
 - Median-of-medians QuickSelect (MEDianQuickSelect)
 - **worst case** runtime in \(\Omega(n) \)

The algorithm we will see picks a good pivot in every recursive call. Both the pivot is as good as possible.
HIGH LEVEL ALGORITHM

• Similar to QuickSelect
 • Choose a pivot
 • Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
 • Recursively call ModifiedOMQuickSelect on one subarray
 • Only difference is how we choose the pivot
• Always want to pick a good pivot

Example input:
A[1...50]:

46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 11, 38, 6, 21, 20, 17, 5, 7, 9, 8, 34, 49, 41, 28, 18, 44, 31, 4, 48, 44, 25, 9, 5, 10, 23, 15, 43, 42, 16, 32, 15, 24, 1, 30, 12, 15, 26, 19, 36, 35, 37, 39, 25, 90, 46, 29, 42

ALWAYS PICKING A GOOD PIVOT

Example input:
A[1...10]:

5, 4, 3, 2, 1, 10, 9, 8, 7, 6

Time complexity for this step: \(\Theta(n) \)

Time complexity for this step: \(\Theta(n) \)

Recursive problem size: \(\frac{n}{2} \)

How Good is the Pivot

- Selects pivot \(i \) so \(\frac{\pi}{2} \leq \frac{\pi}{2} \leq \frac{\pi}{2} \)
 - \(n \) is at least \(\frac{\pi}{2} \)
 - \(n \) is at least \(\frac{\pi}{2} \) of \(\frac{\pi}{2} \)
 - \(n \) is at least \(\frac{\pi}{2} \) of \(\frac{\pi}{2} \)
 - \(n \) is at least \(\frac{\pi}{2} \) of \(\frac{\pi}{2} \)

Time Complexity

Example input:
A[1...50]:

Group into rows of 5

<table>
<thead>
<tr>
<th>11</th>
<th>38</th>
<th>6</th>
<th>21</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>34</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>44</td>
<td>31</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>50</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>35</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>36</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>10</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

Find median of each row

<table>
<thead>
<tr>
<th>11</th>
<th>38</th>
<th>6</th>
<th>21</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>34</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>44</td>
<td>31</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>50</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>35</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>36</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>10</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

Time complexity for this step: \(\Theta(n) \)

Time complexity for this step: \(\Theta(n) \)

Recursive problem size: \(\frac{n}{2} \)
Time complexity?

```
// base case
if n == 14 then sort(A) and return A[k]
// divide and conquer to find medians
r = floor(n/2)
if k <= r then return y
if k > r then return y
// divide and conquer to find ranks
(Al, A2, A3) = Restructure(A, y)
if k <= r then return RankQuickSelect(k, A1, B)
else if k > r + 1 then return RankQuickSelect(k, A3, B)
else return y
```

 HOW MUCH DOES THE PROBLEM SHRINK?

- Shrinks by at least $3(r + 1)$
- Problem size = $n = 10r + 5$
- Subproblem size $\leq n = 10r + 5 - 3r - 3 = 7r + 2$
- Express in terms of n using $r = \left\lfloor \frac{n}{10} \right\rfloor$

$$
\text{Subproblem size } \leq T\left\lfloor \frac{n}{10} \right\rfloor + 7 \leq \frac{7n}{10} + 2
$$

$$
= \frac{7}{10} \cdot n + 2 = \frac{7}{10} \cdot n + 2 \leq \frac{7}{10} \cdot 10 + 2
$$

Time complexity

```
// base case
if n == 14 then sort(A) and return A[k]
// divide and conquer to find medians
r = floor(n/2)
if k <= r then return y
if k > r then return y
// divide and conquer to find ranks
(Al, A2, A3) = Restructure(A, y)
if k <= r then return RankQuickSelect(k, A1, B)
else if k > r + 1 then return RankQuickSelect(k, A3, B)
else return y
```

LET $T(n) = c'n + \frac{T\left(\frac{n}{2}\right)}{10} + T\left(\frac{7n}{10}\right)$ WHERE $c' > 0$

Want to prove: $T(n) = cn$ for some $c > 0$

- Note c and c' are independent constants
 - c' comes from the work at each level of recursion being $O(n)$
 - c is a positive constant we are trying to show exists
- I.H.: Suppose $3c > 0 : T(n') = cn'$ for $15 \leq n' < n$

\[
T(n) = c'n + \frac{T\left(\frac{n}{2}\right)}{10} + T\left(\frac{7n}{10}\right)
\]
(by inductive hypoth.)

\[
T(n) = cn
\]
(want this to be true)

\[
\Rightarrow c'n + \frac{T\left(\frac{n}{2}\right)}{10} + T\left(\frac{7n}{10}\right) = cn
\]
(equivalently)

\[
\Rightarrow c'n + \frac{c'n}{10} + T\left(\frac{7n}{10}\right) = cn
\]
(by algebra)

THE CLOSEST PAIR PROBLEM

- **LEWIN FAMILY'S NEIGHBORHOOD**
 - **DISTANCE BETWEEN PAIRS**
 - **PROBLEM STATEMENT**
 - **ALGORITHM**
 - **TIME COMPLEXITY**

- **GUESS & CHECK**
 - **INDUCTIVE HYPOTHESIS**
 - **BASE CASE**
 - **INDUCTIVE STEP**
 - **ASSESSMENT**

- **THEOREM**

- **PROOF**

- **CONCLUSION**

- **APPLICATION**

- **FURTHER RESEARCH**
THE CLOSEST PAIR PROBLEM

- **Input:** Set \(P \) of \(n \) 2D points
- **Output:** pair \(p \) and \(q \) s.t. \(\text{dist}(p, q) \) minimum over all pairs
- Break ties arbitrarily
- \(\text{dist}(p, q) = (p_x - q_x)^2 + (p_y - q_y)^2 \)

Can we Divide & Conquer?

- Like non-dominated points: sort by x-axis & divide in half
- Claim that doesn't require a proof: closest pair \((p, q)\):
 1. \((p, q)\) both in \(L \) or
 2. \((p, q)\) both in \(R \) or
 3. One of \((p, q)\) in \(L \) and one of \((p, q)\) in \(R \)

Observation 1

- Let \(\delta = \min(\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R)) \)
- Then pair, if closest globally, lies in the above \(2\delta \)-wide green strip
- Why?

Example for Observation 1

- \(Q: \) Can \(p \) be part of a globally closest pair, \(p \)?
- \(A: \) No. Everything in \(R \) has \(\text{dist} > \delta \) to \(p \).
 And we already have a solution with \(\text{dist} = \delta \).

Observation 2

- Say, \(p \) (the lowest \(y \)-valued point in strip) is in \(\text{pair}_s \)
 - Has to be on the opposite side & can't be \(> \delta \) higher than \(p \) on \(y \)-axis.
- Then the other point can only lie in this \(\delta \times \delta \) square.
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Switching sides might complicate code...

A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time

Claim: loop performs $O(1)$ iterations!
POINTS IN A $\delta \times \delta$ SQUARE

- Recall δ is the smallest distance between any pair of points that are both in L or both in R.
- Note this square is entirely in L or entirely in R.

So, δ is the smallest distance between any pair of points in this square!

A point in the middle would rule out any other points.

So, most efficient packing of points puts one in each corner (4 total).

Time complexity

- Loop performs at most eight iterations.
- Each does $\Theta(1)$ work, so entire loop does $\Theta(1)$ work.
- So, findMinSpanningPair does $\Theta(n \log n)$ work.

IMPROVING THE PREVIOUS ALGORITHM

- Sorting by y-values causes findMinSpanningPair to take $O(n \log n)$ time instead of $O(n)$ time.
- This happens in each recursive call, and dominates the running time.
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values.
Shamos’ algorithm (1975)

This selection step preserves the y-sort order

Observe P_x and P_y contain the same points (specifically the points with $x \leq x_{mid}$).

Moreover P_x is sorted by x while P_y is sorted by y.

And similarly for P_R, P_y.

No need to sort in Recurse!

Total $\Theta(n)$ for this function

Time complexity

$T(n) = 2T(n/2) + O(n)$

Merge sort recurrence.

$T(n) \in \Theta(n \log n)$

So runtime for Shamos algorithm is $\Theta(n \log n)$.