THE SELECTION PROBLEM

• Input: An array A containing n distinct integer values, and an integer k between 1 and n
• Output: The kth smallest integer in A
• Minimum is a special case where $k = 1$
• Median is a special case where $k = \frac{n}{2}$
• Maximum is a special case where $k = n$
• Simple algorithm for solving selection?

Recursive calls

Number of elements in this range $= l_y$

• What's the kth smallest element of A?
 • If $k = l_y$ then y
 • If $k < l_y$ then the kth smallest in A_1
 • If $k > l_y$ then the $(k - l_y)$th smallest in A_R

QuickSelect(k, $A[l..r]$)

1. if $n = 1$ then return $A[1]$ // base case
3. if $k = 1$ then return y
4. if $k > 1$ then return QuickSelect($k - 1$, AR) // to avoid need for expansion
5. if $r = 1$ then return y
7. if $y < A[r]$ then $r = r - 1$ // $AR[0..r]$ is a new array
8. $AR[l] = a[l]$
9. $AR[r] = a[r]$
10. $m = (l + r) / 2$
11. $AR[m] = a[m]$
12. for $i := l$ to r do
13. if $A[i] < y$ then $AR[m + 1] = A[i]$
14. else if $A[i] > y$ then $AR[m + 1] = A[i]$
15. return QuickSelect($k - 1$, AR) // $AR[0..r]$ is the new index of y
OVERLY OPTIMISTIC ANALYSIS

- If \(i_y = \frac{n}{2} \) then we recurse on \(\frac{n}{2} \) elements.
- We could always recurse on \(\frac{n}{2} \) elements.
 - We would get \(T(n) = T\left(\frac{n}{2}\right) + 8(n) \)
 - Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0, y > x \text{ and } T(n) \in \Theta(n^3) = \Theta(n) \) by the Master theorem.

But we often end up recursing on \(\frac{n}{2} \) elements!

WORST-CASE ANALYSIS

- If we always get \(i_y = 1 \) and recurse on the right, then
 - We get \(T(n) = T(n-1) + \Theta(n) \)
 - By the substitution method this is \(\Theta(n^2) \)
- So, sometimes the pivot is good, sometimes it’s bad...
- What about the average case?

AVERAGE-CASE ANALYSIS

- Definition: we say a pivot is good if \(i_y \in \left(\frac{n}{4}, \frac{n}{2}\right) \)
- For any good pivot, we recurse on at most \(\frac{n}{2} \) elements.
- Probability of an arbitrary pivot being good?

Here is a more rigorous proof of the average-case complexity. We say the algorithm is in phase \(j \) if the current subarray has size \(x \), where

\[
\left(\frac{3}{4}\right)^{j+1} < x \leq \left(\frac{3}{4}\right)^{j}.
\]

Let \(X_j \) be a random variable that denotes the amount of computation time occurring in phase \(j \). If the pivot is in the middle half of the current subarray, then we transition from phase \(j \) to phase \(j + 1 \). This occurs with probability \(\frac{1}{2} \), so the expected number of recursive calls in phase \(j \) is \(2 \). The computing time for each recursive call is linear in the size of the current subarray, so \(E[X_j] \leq 2n/4^j \) (where \(E[X] \) denotes the expectation of a random variable). The total time of the algorithm is given by \(X = \sum_{j \geq 1} X_j \). Therefore

\[
E[X] = \sum_{j \geq 1} E[X_j] \leq 2n \sum_{j \geq 1} 3/4^j = 8n \in O(n).
\]

TAKING SELECTION FURTHER

- We just showed:
 - QuickSelect with average-case runtime in \(\Theta(n) \)
- Next up:
 - Median-of-medians QuickSelect (MOQ)
 - Worst-case runtime in \(\Theta(n) \)

This is just for your notes, in case you want to know how you’d do this analysis formally.

The algorithm we will see picks a good pivot in every recursive call.
HIGH LEVEL ALGORITHM

- Similar to QuickSelect
- Choose a pivot
- Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
- Recursively call MOMQuickSelect on one subarray
- Only difference is how we choose the pivot
- Always want to pick a good pivot

HOW GOOD IS THE PIVOT?

Recall median of each row

Imagine sorting each row

Then ordering row medians

elements ≤ 23 is at least 3/10 of our 50-element input, or 3/18.

So, after sorting, rows must have at least 3/18 elements before and after

Is it a good pivot?

We recurse on δ_1 or δ_2, and both have size of mod 7

ALWAYS PICKING A GOOD PIVOT

Example input

A[1...50] =
11, 38, 6, 21, 20, 27, 4, 5, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 44, 48, 27, 4, 5, 10, 30, 25, 14, 43, 22, 15, 32, 35, 41, 24, 1, 30, 22, 15, 26, 32, 36, 25, 37, 29, 45, 25, 49, 42

Time complexity for this step

Time complexity for this step

MOMQuickSelect(k, n, A)

// base case
if (n <= 14) then return(A[k])

// divide and conquer to find medians
r = \lceil \frac{n}{10} \rceil
medians([r])(k) = new array
for i = 1, 2, ..., r
 medians[i] = A([1, 2, ..., i])

sort(medians)

y = MOMQuickSelect(r, r)(medians)

// divide and conquer to find median of the r
\text{medians}([r])
\text{medians}([r])(k) = new array
for i = 1, 2, ..., r
 \text{sort}([\text{medians}([r]), \text{y}])

medians[r] = \text{y}

// divide and conquer to find rank k
AL, AR, y = Restructure(y, y)

if k <= y then return y
else if r < k then return MOMQuickSelect(k-y, AL)...
else if k > y then return MOMQuickSelect(k-y, AR)

MOMQuickSelect(k, 11, n = 14, 4)

// base case
if (n <= 14) then return(A[k])

// divide and conquer to find medians
r = \lceil \frac{n}{10} \rceil
medians([r])(k) = new array
for i = 1, 2, ..., r
 medians[i] = A([1, 2, ..., i])

sort(medians)

y = MOMQuickSelect(r, r)(medians)

// divide and conquer to find median of the r
\text{medians}([r])
\text{medians}([r])(k) = new array
for i = 1, 2, ..., r
 \text{sort}([\text{medians}([r]), \text{y}])

medians[r] = \text{y}

// divide and conquer to find rank k
AL, AR, y = Restructure(y, y)

if k <= y then return y
else if r < k then return MOMQuickSelect(k-y, AL)...
else if k > y then return MOMQuickSelect(k-y, AR)

MOMQuickSelect(k, 11, n = 21, A)

// base case
if (n <= 14) then return(A[k])

// divide and conquer to find medians
r = \lceil \frac{n}{10} \rceil
medians([r])(k) = new array
for i = 1, 2, ..., r
 medians[i] = A([1, 2, ..., i])

sort(medians)

y = MOMQuickSelect(r, r)(medians)

// divide and conquer to find median of the r
\text{medians}([r])
\text{medians}([r])(k) = new array
for i = 1, 2, ..., r
 \text{sort}([\text{medians}([r]), \text{y}])

medians[r] = \text{y}

// divide and conquer to find rank k
AL, AR, y = Restructure(y, y)

if k <= y then return y
else if r < k then return MOMQuickSelect(k-y, AL)...
else if k > y then return MOMQuickSelect(k-y, AR)
Time complexity?

```
[Diagram of array partitioning]
```

Want # ordered row operations

```
\[
\begin{array}{c|c|c|c}
0 & 1 & 2 & 3 \\
\hline
1 & 2 & 3 & 4 \\
\end{array}
\]
```

\(n \) iterations

```
\[
T(n) \in O(n) + T(n/5) + T(7n/10)
\]
```

\(\frac{T(n)}{n} \) grows to a maximum

```
\[
\frac{T(n)}{n} = C \frac{n}{10}
\]
```

\(T(n) \in O(n) \) if \(n \leq 14 \)

\(T(n) \in O(1) \) if \(n \geq 15 \)

\(T(n) \in O(n) \) if \(n \geq 15 \)

\(T(n) \in O(1) \) if \(n \leq 14 \)

```
\[
\sum \left( \frac{3}{10} \right)^i = 10 \approx 10(1)
\]
```

\(7(n) \in O(n) + T(n/5) + T(7n/10) \) if \(n \geq 15 \)

\(7(n) \in O(1) \) if \(n \leq 14 \)

```
\[
\text{Guess & check: } T(n) = cn
\]
```

\(T(n) = c'n + \left(\frac{3}{10} \right)^n \) where \(c' > 0 \)

Want to prove: \(T(n) = cn \) for some \(c > 0 \)

\(c' \) comes from the work of each level of recursion being \(0(n) \)

\(c \) is a positive constant we are trying to show exists

I.H.: Suppose \(3c > 0 \) \(T(n') = cn' \) for \(15 \leq n' < n \)

\(T(n) = c'n + c \frac{3^n}{10} \) (by inductive hypoth.)

\(T(n) = cn \) (want this to be true)

\(c'n + c \frac{3^n}{10} = cn \) (equivalently)

\(c'n + c \frac{3^n}{10} = c \Leftrightarrow c = 10c' \) (by algebra)

How much does the problem shrink?

\(\bullet \) Shrink by at least \(3(r + 1) \)

\(\bullet \) Problem size \(\equiv n = 10r + 5 \)

\(\bullet \) Subproblem size \(\leq n - \text{Shrink} = n - 3(r + 1) \)

\(\bullet \) \(= 10r + 5 - 3r - 3 = 7r + 2 \)

\(\bullet \) Express in terms of \(n \) using \(r = \frac{n - 5}{10} \)

\(\bullet \) Subproblem size \(\leq 7 \left(\frac{n - 5}{10} \right) + 2 \leq \frac{7n + 5}{10} \)

\(\bullet \) \(= \frac{7n}{10} - \frac{35}{10} + 2 = \frac{n}{10} + \frac{7}{10} \)

The closest pair problem

\(\text{When someone near you coughs} \)

\(\text{Hope you are not anti-vaxxer} \)

\(\text{Classroom} \)
THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2D points
◆ Output: pair p and q s.t. dist(p, q) minimum over all pairs
◆ Break ties arbitrarily
◆ dist(p,q) = \((p.x - q.x)^2 + (p.y - q.y)^2\)

Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

Claim that doesn’t require a proof: closest pair (p, q):
1. (p, q) both in L or
2. (p, q) both in R or
3. One of (p, q) in L and one of (p, q) in R

Observation 1

◆ Let \(\delta = \min(\text{dist(pair}_L), \text{dist(pair}_R))\)
◆ Then pair, (if closest globally) lies in the above 2\(\delta\)-wide green strip

Example for Observation 1

Q: Can p be part of a globally closest pair? A: No. Everything in R has dist > \(\delta\) to p.
And we already have a solution with dist = \(\delta\).

Observation 2

◆ Say, p (the lowest y valued point in strip) is in pair
◆ Then the other point can only lie in this \(\delta x \delta\) square.
Core Idea For Finding Spanning Pair
1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

A More Practical Idea
◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time

Switching sides might complicate code... Turns out it’s not needed to get good time complexity.
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time

Claim: loop performs $O(1)$ iterations!

Time complexity?

For a particular i, how many j iterations occur?

Obs: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.
So, δ is the smallest distance between any pair of points in this square! A point in the middle would rule out any other points. So, most efficient packing of points puts one in each corner (4 total).

Observe: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.

Time complexity:

For a particular i, how many j iterations occur?

For $i = 1..\text{len}(S)$,
for $j = (i+1)\ldots\text{len}(S)$,
if $S(i) \neq S(j)$ then break.

Can only contain eight points!

Points in S.

Loop performs at most eight iterations.
Each does $O(1)$ work, so entire loop does $O(1)$ work.
So, `findMinSpanningPair` does $O(n \log n)$ work.

Time complexity:

`closestPair(P, len(P))` sort(P) by x values
Recurse(P) $O(n \log n)$

`findMinSpanningPair(P, 2)` $O(n \log n)$

• Let $T(n)$ be runtime of `closestPair(P, len(P))`
• Let $T(n)$ be runtime of `findMinSpanningPair(P, 2)`

$T(n) = \Theta(n \log n)$
$T(n) = \Theta(n \log n)$
$T(n) = \Theta(n \log n)$
$\therefore T(n) = \Theta(n \log n)$
$\therefore T(n) = \Theta(n \log n)$
$\therefore T(n) = \Theta(n \log n)$

Improving the previous algorithm

• Sorting by y-values causes `findMinSpanningPair` to take $O(n \log n)$ time instead of $O(n)$ time.
• This happens in each recursive call, and dominates the running time.
• Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values.
This selection step preserves the y-sort order

Observe $P_x L$ and $P_y L$ contain the same points
(specifically the points with $x \leq x_{mid}$).

Moreover $P_x L$ is sorted by x while $P_y L$ is sorted by y
And similarly for $P_x R$, $P_y R$.
No need to sort in Recurse!

Time complexity

$T(n) = \Theta(n \log n)$

Merge sort recurrence.
$T(n) \in \Theta(n \log n)$

So runtime for Shamos algorithm is in $\Theta(n \log n)$.