THE SELECTION PROBLEM

NATURAL SELECTION

in progress...
THE SELECTION PROBLEM

- **Input:** An array A containing n distinct integer values, and an integer k between 1 and n
- **Output:** The k-th smallest integer in A
- **Minimum** is a special case where $k = 1$
- **Median** is a special case where $k = \frac{n}{2}$
- **Maximum** is a special case where $k = n$
- Simple algorithm for solving selection?
Suppose we choose a pivot element \(y \) in the array \(A \), and we redefine \(A \) so that all elements less than \(y \) precede \(y \) in \(A \), and all elements greater than \(y \) occur after \(y \) in \(A \). (This is exactly what is done in Quicksort, and it takes linear time.)

\[
\begin{array}{c}
A \\
12 \ 4 \ 6 \ 27 \ 23 \ 17 \ 40 \ 9 \\
12 \ 4 \ 6 \ 27 \ 23 \ 17 \ 40 \ 9
\end{array}
\]

\[
\begin{array}{c}
\text{Restructure}(A, y) \\
12 \ 4 \ 6 \ 17 \ 9 \ 23 \ 27 \ 40 \\
4 \ 6 \ 12 \ 27 \ 23 \ 17 \ 40 \ 9
\end{array}
\]

Number of elements on each side depend on the value \(y \)...
What's the k-th smallest element of A?

- If $k = i_y$ then y
- If $k < i_y$ then the kth smallest in A_L
- If $k > i_y$ then the $(k - i_y)$th smallest in A_R
QuickSelect(k, A[1..n])
 if n = 1 then return A[1] // base case

 y = A[1] // pick an arbitrary pivot
 (AL, AR, iy) = Restructure(A, y)

 if k == iy return y
 else if k < iy then return QuickSelect(k, AL)
 else /* k > iy */ return QuickSelect(k - iy, AR)

Restructure(A[1..n], y)
 AL = new array[1..n] // allocate more than enough
 AR = new array[1..n] // to avoid need for expansion
 nL = 0, nR = 0

 for i = 1 .. n
 if A[i] < y then AL[nL++] = A[i]
 else A[i] > y then AR[nR++] = A[i]

 return (AL, AR, nL+1) // nL+1 is the new index of y
OVERLY OPTIMISTIC ANALYSIS ☺

\[A \text{ after } Restructure(A, y) \]

\[\begin{array}{cccccccc}
12 & 4 & 6 & 17 & 9 & 23 & 27 & 40
\end{array} \]

- If \(i_y = \frac{n}{2} \), then we recurse on \(\sim \frac{n}{2} \) elements,
- If we could always recurse on \(\frac{n}{2} \) elements then
 - We would get \(T(n) = T \left(\frac{n}{2} \right) + \Theta(n) \)
 - Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0, y > x \) and \(T(n) \in \Theta(n^y) = \Theta(n) \) by the Master theorem.

But we don't always recurse on \(\frac{n}{2} \) elements!
WORST-CASE ANALYSIS

If we always get $i_y = 1$ and recurse on the right, then

- We get $T(n) = T(n - 1) + \Theta(n)$
- By the substitution method this is $\Theta(n^2)$

So, sometimes the pivot is good, sometimes it’s bad…

What about the average case?
AVERAGE-CASE ANALYSIS

- Definition: we say a pivot y is good if $i_y \in \left(\frac{n}{4}, \frac{3n}{4}\right)$

For any good pivot, we recurse on at most $\frac{3n}{4}$ elements.

Reduction of the subproblem by at least $\frac{1}{4}$

Probability of an arbitrary pivot being good?
Probability of a good pivot is $\frac{1}{2}$, so

On average, every two recursive calls, we will encounter a good pivot.

Cost of two recursive calls:
- $O(n)$ for two calls to Restructure (pivoting)
- $O(1)$ for other steps

Encountering a good pivot reduces problem size by at least $\frac{n}{4}$

So, problem size is reduced by $\frac{n}{4}$ after expected linear work.

Let’s consider the average-case recurrence relation:

$T(n) = T(3n/4) + \Theta(n)$.

Apply the **Master Theorem** with $a = 1$, $b = 4/3$ and $y = 1$. Here $x = \log_{4/3} 1 = 0 < 1 = y$ so we are in case 3.

This yields $T(n) \in \Theta(n)$ on average.
Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase j if the current subarray has size s, where

$$n \left(\frac{3}{4}\right)^{j+1} < s \leq n \left(\frac{3}{4}\right)^j.$$

Let X_j be a random variable that denotes the amount of computation time occurring in phase j. If the pivot is in the middle half of the current subarray, then we transition from phase j to phase $j + 1$. This occurs with probability $1/2$, so the expected number of recursive calls in phase j is 2. The computing time for each recursive call is linear in the size of the current subarray, so $E[X_j] \leq 2cn(3/4)^j$ (where $E[\cdot]$ denotes the expectation of a random variable). The total time of the algorithm is given by $X = \sum_{j \geq 0} X_j$. Therefore

$$E[X] = \sum_{j \geq 0} E[X_j] \leq 2cn \sum_{j \geq 0} (3/4)^j = 8cn \in O(n).$$

This is just for your notes, in case you want to know how you’d do this analysis formally
We just showed:

- QuickSelect with **average case** runtime in $O(n)$

Next up:

- Median-of-medians QuickSelect (MOMQuickSelect)
 - **worst case** runtime in $O(n)$

Relies on getting a **good pivot** within $O(1)$ recursive calls **on average**

The algorithm we will see picks a **good pivot** in **every** recursive call

Must get a **good pivot** within $O(1)$ recursive calls **always**
HIGH LEVEL ALGORITHM

- Similar to QuickSelect
 - **Choose** a pivot
 - Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
 - Recursively call MOMQuickSelect on one subarray
- Only difference is **how** we choose the pivot
 - **Always** want to pick a **good pivot**
ALWAYS PICKING A GOOD PIVOT

Example input

A[1...50]: 11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 1, 30, 12, 15, 26, 16, 19, 36, 33, 37, 39, 25, 40, 29, 42

<table>
<thead>
<tr>
<th>Group into rows of 5</th>
<th>Find median of each row</th>
<th>Build array of medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 38 6 21 20</td>
<td>11 38 6 21 20</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>17 14 9 7 5</td>
<td>17 14 9 7 5</td>
<td></td>
</tr>
<tr>
<td>8 34 49 47 28</td>
<td>8 34 49 47 28</td>
<td></td>
</tr>
<tr>
<td>18 44 31 46 48</td>
<td>18 44 31 46 48</td>
<td></td>
</tr>
<tr>
<td>27 4 2 50 23</td>
<td>27 4 2 50 23</td>
<td></td>
</tr>
<tr>
<td>45 3 13 43 22</td>
<td>45 3 13 43 22</td>
<td></td>
</tr>
<tr>
<td>10 32 35 41 24</td>
<td>10 32 35 41 24</td>
<td></td>
</tr>
<tr>
<td>1 30 12 15 26</td>
<td>1 30 12 15 26</td>
<td></td>
</tr>
<tr>
<td>16 19 36 33 37</td>
<td>16 19 36 33 37</td>
<td></td>
</tr>
<tr>
<td>39 25 40 29 42</td>
<td>39 25 40 29 42</td>
<td></td>
</tr>
</tbody>
</table>

Time complexity for this step?

Time complexity for this step?

Recursively find the median of these medians: **23**

Recursive problem size?
Recall: median of each row

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>38</td>
<td>6</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>49</td>
<td>47</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>44</td>
<td>31</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>13</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>35</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>12</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>36</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
<td>40</td>
<td>29</td>
<td>42</td>
</tr>
</tbody>
</table>

Imagine sorting each row:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then ordering rows by medians:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>20</td>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>22</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>32</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>33</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>34</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

elements ≤ 23 is at least 3(5). This is at least 3/10ths of our 50-element input, or 3n/10.

elements ≥ 23 is at least 3(6). This is at least 3/10ths of our 50-element input.

So, after restructuring, pivot 23 must have at least 3n/10 elements before and after it.

This is a good pivot!

We recurse on A_L or A_R, and both have size at most 7n/10.
MOMQuickSelect(k = 11, n = 14, A)

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47

5, 6, 7, 9, 7, 11, 14, 17, 20, 21, 34, 38, 47, 49

1 MOMQuickSelect(k, n, A)
2 // base case
3 if n <= 14 then sort(A) and return A[k]
4
5 // divide and conquer to find medians
6 r = (n-5) / 10
7 medians[1..(2*r+1)] = new array
8 for i = 1..(2*r+1)
9 B[1..5] = A[(5*(i-1)+1)..(5*i)]
10 sort(B)
11 medians[i] = B[3]
12
13 y = MOMQuickSelect(r+1, 2*r+1, medians)
14
15 // divide and conquer to find rank k
16 (AL, AR, iy) = Restructure(A, y)
17 if k == iy then return y
18 else if k < iy then return MOMQuickSelect(k, iy-1, AL)
19 else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)
MOMQuickSelect\((k = 11, n = 21, A)\)

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27

\[r = \left\lfloor \frac{21 - 5}{10} \right\rfloor = 1 \]

Not considering at most 9 elements

\[B \]

\begin{array}{ccccccc}
11 & 38 & 6 & 21 & 20 \\
16 & 11 & 20 & 21 & 38 \\
17 & 14 & 9 & 7 & 5 \\
15 & 7 & 9 & 14 & 17 \\
8 & 34 & 49 & 47 & 28 \\
8 & 28 & 34 & 47 & 49 \\
\end{array}

\[y = \text{MOMQuickSelect}\left(r + 1, 2r + 1, \text{medians}\right) \]

\[y = \text{MOMQuickSelect}\left(2, 3, [20, 9, 34]\right) \Rightarrow 20 \]
MOMQuickSelect(k = 11, n = 21, A)
11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 41, 46, 48, 27

Restructure(A, y = 20) ⇒

\[A_L = [11, 6, 17, 14, 9, 7, 5, 8, 18] \]
\[A_R = [38, 21, 34, 49, 47, 28, 44, 31, 46, 48, 27] \]
\[i_y = |A_L| + 1 = 10 \]

\[k = 11 \quad > \quad i_y = 10 \]
\[k - i_y = 1 \quad n - i_y = 10 \]

\[MOMQuickSelect(1, 10, A_R) \Rightarrow 21 \]
Time complexity?

// base case
if n <= 14 then sort(A) and return A[k]

// divide and conquer to find medians
r = (n-5) / 10
medians[1..(2*r+1)] = new array
for i = 1..(2*r+1)
 B[1..5] = A[(5*(i-1)+1)..<(5*i)]
sort(B)
 medians[i] = B[3]
y = MOMQuickSelect(r+1, 2*r+1, medians)

// divide and conquer to find rank k
(AL, AR, iy) = Restructure(A, y)
if k == iy then return y
else if k < iy then return MOMQuickSelect(k, iy-1, AL)
else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)

Rows B ordered by medians

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>14</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>15</td>
<td>26</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>39</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{3(r+1) elements} & \leq y \\
\text{3(r+1) elements} & \geq y \\
\end{align*}
\]

So problem size shrinks by at least \(3(r+1)\)

Observe \(n = 10r + 5\)
HOW MUCH DOES THE PROBLEM SHRINK?

- Shrinks by at least $3(r + 1)$
- Problem size $\sim = n = 10r + 5$
- Subproblem size $\leq n - Shrink = n - 3(r + 1)$
 - $= 10r + 5 - 3r - 3 = 7r + 2$
- Express in terms of n using $r = \left\lfloor \frac{n-5}{10} \right\rfloor$
 - Subproblem size $\leq 7 \left\lfloor \frac{n-5}{10} \right\rfloor + 2 \leq 7 \frac{n-5}{10} + 2$
 - $= \frac{7n}{10} - 7 \left(\frac{5}{10} \right) + 2 = \frac{7n}{10} - \frac{3}{2} \leq \frac{7n}{10}$
// base case
if n <= 14 then sort(A) and return A[k]

// divide and conquer to find medians
r = (n-5) / 10
medians[1..(2*r+1)] = new array
for i = 1..(2*r+1)
 B[1..5] = A[(5*(i-1)+1)..(5*i)]
sort(B)
medians[i] = B[3]
y = MOMQuickSelect(r+1, 2*r+1, medians)

// divide and conquer to find rank k
(AL, AR, iy) = Restructure(A, y)
if k == iy then return y
else if k < iy then return MOMQuickSelect(k, iy-1, AL)
else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)

T(n) ∈ O(n) + T(n/5) + T(7n/10) if n ≥ 15
T(n) ∈ O(1) if n ≤ 14
The key fact is that \(1/5 + 7/10 = 19/20 < 1\).

The fact that \(T(n) \in \Theta(n)\) can be proven formally using guess-and-check (induction) or informally using the recursion tree method.

\[
T(n) \in O(n) + T(n/5) + T(7n/10) \quad \text{if } n \geq 15 \\
T(n) \in O(1) \quad \text{if } n \leq 14
\]

\[
\sum_{i=0}^{\infty} n \left(\frac{9}{10}\right)^i = 10n \in \Theta(n)
\]
Let $T(n) = c'n + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$ where $c' > 0$

Want to prove: $T(n) = cn$ for some $c > 0$

Note c and c' are independent constants
- c' comes from the work at each level of recursion being $O(n)$
- c is a positive constant we are trying to show exists

I.H.: Suppose $\exists c > 0 : T(n') = cn'$ for $15 \leq n' < n$

$T(n) = c'n + c\frac{n}{5} + c\frac{7n}{10}$ (by inductive hypoth.)

$T(n) = cn$ (want this to be true)

$\iff c'n + c\frac{n}{5} + c\frac{7n}{10} = cn$ (equivalently)

$\iff c' + c\frac{1}{5} + c\frac{7}{10} = c \iff c = 10c'$ (by algebra)
THE CLOSEST PAIR PROBLEM

-Hopefully not anti-vaxxer

When someone near you coughs
The Closest Pair Problem

◆ Input: Set P of n 2D points

◆ Output: pair p and q s.t. dist(p, q) minimum over all pairs

◆ Break ties arbitrarily

◆ \(\text{dist}(p, q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2} \)
Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

Claim that doesn’t require a proof: closest pair \((p, q)\):

1. \((p, q)\) both in \(L\) or
2. \((p, q)\) both in \(R\) or
3. One of \((p, q)\) in \(L\) and one of \((p, q)\) in \(R\)

We call this a spanning pair
ClosestPair(P[1..n])
 sort(P) by x values
 Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
 // base case
 if n < 4 then compare all pairs and return closest

 // divide & conquer
 pairL = Recurse(P[1..(n/2)])
 pairR = Recurse(P[(n/2)+1..n])

 // combine
 pairS = findMinSpanningPair(P)
 return minDistPair(pairL, pairR, pairS)
Observation 1

◆ Let $\delta = \min (\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R))$

◆ Then pair s (if closest globally) lies in the above 2δ-wide green strip

Q: Why?
Example for Observation 1

Q: Can p be part of a globally closest pair s?
A: No. Everything in R has $\text{dist} > \delta$ to p.
And we already have a solution with $\text{dist} = \delta$.
Observation 2

◆ Say, \(p \) (the lowest \(y \) valued point in strip) is in pair, \(\delta \delta \).

◆ Then the other point can only lie in this \(\delta \times \delta \) square.

\(\delta \)
\(\delta \)

\(\delta \)
\(\delta \)

\(p \)

\(\leftarrow L \rightarrow R \)

Has to be on the opposite side & can’t be > \(\delta \) higher than \(p \) on \(y \) axis.

Q: Why?

◆ Then the other point can only lie in this \(\delta \times \delta \) square.
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

\[\delta \quad \delta \]

$\leftrightarrow L \quad R \rightarrow$
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Switching sides might complicate code...
Turns out it’s not needed to get good time complexity.
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time
ClosestPair(P[1..n])
 sort(P) by x values
 Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
 // base case
 if n < 4 then compare all pairs and return closest

 // divide & conquer
 pairL = Recurse(P[1..(n/2)])
 pairR = Recurse(P[(n/2)+1..n])

 // combine
 δ = min(dist(pairL), dist(pairR))
 pairS = findMinSpanningPair(P, δ)
 return minDistPair(pairL, pairR, pairS)
Claim: loop performs $O(1)$ iterations!

```python
findMinSpanningPair(δ, P[1..n]) // P sorted by x
S = { p in P : abs(P[n/2].x - p.x) <= δ }
sort(S) by increasing y values
minPair = (S[1], S[2]) // arbitrary pair to start
for i = 1..len(S)
    for j = (i+1)..len(S)
        if S[j].y - S[i].y > δ then break
        minPair = minDistPair(minPair, (S[i], S[j]))
return minPair
```

- Time complexity: $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(1)$
For a particular i, how many j iterations occur?

Obs: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.
POINTS IN A $\delta \times \delta$ SQUARE

- Recall δ is the smallest distance between any pair of points that are both in L or both in R
- Note this square is entirely in L or entirely in R

So, δ is the smallest distance between any pair of points in this square!

A point in the middle would rule out any other points

So, most efficient packing of points puts one in each corner (4 total)
For a particular i, how many j iterations occur?

Observation: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.

Can only contain eight points!
Loop performs at most **eight** iterations
- Each does $\Theta(1)$ work, so entire loop does $\Theta(1)$ work!
- So, `findMinSpanningPair` does $\Theta(n \log n)$ work
Let $T'(n)$ be runtime of $\text{ClosestPair}(P[1..n])$

- Let $T(n)$ be runtime of $\text{Recurse}(P[1..n])$
 - $T'(n) \in \Theta(n \log n) + T(n)$
 - $T(n) \in 2T\left(\frac{n}{2}\right) + \Theta(n \log n)$

In Lec4, we used recursion trees to show
- $T(n) \in \Theta(n \log^2 n)$
- $T'(n) \in \Theta(n \log n) + \Theta(n \log^2 n)$
- So $T'(n) \in \Theta(n \log^2 n)$
IMPROVING THIS RESULT FURTHER
IMPROVING THE PREVIOUS ALGORITHM

- Sorting by \(y \)-values causes \texttt{findMinSpanningPair} to take \(O(n \log n) \) time instead of \(O(n) \) time.
- This happens in each recursive call, and dominates the running time.
- Avoid sorting \(P \) over and over by creating another copy of \(P \) that is \textit{pre-sorted} by \(y \)-values.
Shamos' algorithm (1975)

This selection step preserves the y-sort order

Observe PxL and PyL contain the same points (specifically the points with $x \leq x_{mid}$)

Moreover PxL is sorted by x while PyL is sorted by y

And similarly for PxR, PyR...

No need to sort in Recurse!

```python
ShamosClosestPair(P[1..n])
Px = sort(P) by increasing x values
Py = sort(P) by increasing y values
Recurse(Px, Py)

Recurse(Px[1..n], Py[1..n])
    // base case
    if n < 4 then return BruteForce(Px)

    // divide & conquer
    x_{mid} = Px[n/2].x
    PxL = Px[1..(n/2)] // x \leq x_{mid}
    PxR = Px[(n/2+1)..n] // x > x_{mid}
    PyL = select p from Py where p.x \leq x_{mid}
    PyR = select p from Py where p.x > x_{mid}
    pairL = Recurse(PxL, PyL)
    pairR = Recurse(PxR, PyR)

    // combine
    \delta = \min(dist(pairL), dist(pairR))
    pairS = findMinSpanningPair(\delta, Py, x_{mid})
    return minDistPair(pairL, pairR, pairS)
```
```python
findMinSpanningPair(δ, Py[1..n], xmid) // Py sorted by y
S = { p in Py : abs(xmid - p.x) <= δ }
minPair = (S[1], S[2]) // arbitrary pair to start
for i = 1..len(S)
    for j = (i+1)..<1..len(S)
        if S[j].y - S[i].y > δ then break
        minPair = minDistPair(minPair, (S[i], S[j]))
return minPair
```

Total $\Theta(n)$ for this function and preserves the y-sort order
ShamosClosestPair($P[1..n]$)

1. $P_x = \text{sort}(P)$ by increasing x values
2. $P_y = \text{sort}(P)$ by increasing y values
3. Recurse(P_x, P_y)

Recurse($P_x[1..n], P_y[1..n]$)

// base case
1. if $n < 4$ then return BruteForce(P_x)

// divide & conquer
2. $x_{mid} = P_x[n/2].x$
3. $P_xL = P_x[1..(n/2)]$ // $x <= x_{mid}$
4. $P_xR = P_x[(n/2+1)..n]$ // $x > x_{mid}$
5. $P_yL = \text{select } p \text{ from } P_y \text{ where } p.x <= x_{mid}$
6. $P_yR = \text{select } p \text{ from } P_y \text{ where } p.x > x_{mid}$
7. pair$L = \text{Recurse}(P_xL, P_yL)$
8. pair$R = \text{Recurse}(P_xR, P_yR)$

// combine
9. $\delta = \min(\text{dist}($pair$L), \text{dist}($pair$R))$
10. pair$S = \text{findMinSpanningPair}(\delta, P_y, x_{mid})$
11. return minDistPair(pair$L, pair$R, pairS)

Time complexity

$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

Merge sort recurrence...
$T(n) \in \Theta(n \log n)$

So runtime for Shamos' algorithm is in $\Theta(n \log n)$