THE SELECTION PROBLEM

Input: An array A containing n distinct integer values, and an integer k between 1 and n

Output: The k-th smallest integer in A

Minimum is a special case where $k = 1$

Median is a special case where $k = \frac{n}{2}$

Maximum is a special case where $k = n$

Simple algorithm for solving selection:

Suppose we choose a pivot element y in the array A, and we restructure A so that all elements less than y precede y in A, and all elements greater than y occur after y in A. (This is exactly what is done in quicksort, and it takes linear time.)

A

y

Restructure(A, y)

A

Number of elements on each side depend on the value y...

A after Restructure(A, y)

Recursive calls

What's the k-th smallest element of A?

- If $k = i_y$ then y
- If $k < i_y$ then the k-th smallest in A_L
- If $k > i_y$ then the $(k - i_y)$-th smallest in A_R
OVERLY OPTIMISTIC ANALYSIS 😅

- If \(y = \frac{n}{2} \) then we recurse on \(\frac{n}{2} \) elements.
- If we could always recurse on \(\frac{n}{2} \) elements then
 We would get \(T(n) = T(\frac{n}{2}) + \Theta(n) \)
 - Which would yield \(a = 1, b = 2, y = 1, x = \log_2 1 = 0 \),
 - \(y > x \) and \(T(n) \in \Theta(n^2) \) by the Master theorem.

But we don't always recurse on \(\frac{n}{2} \) elements!

WORST-CASE ANALYSIS

- If we always get \(y = 1 \) and recurse on the right, then
 - We get \(T(n) = T(n-1) + \Theta(n) \)
 - By the substitution method this is \(\Theta(n^2) \)
 - So, sometimes the pivot is good, sometimes it's bad...
 - What about the average case?

AVERAGE-CASE ANALYSIS

- Definition: we say a pivot \(y \) is good if \(y \in \left(\frac{3n}{4}, \frac{3n}{4} \right) \)
- For any good pivot we recurse on at most \(\frac{3n}{4} \) elements
- Probability of an arbitrary pivot being good?

Here is a more rigorous proof of the average-case complexity. We say the algorithm is in phase 1 if the current subarray has size \(x \), where \(n \left(\frac{3}{4} \right)^{j+1} < x \leq n \left(\frac{3}{4} \right)^j \).

Let \(X_j \) be a random variable that denotes the amount of computation time occurring in phase \(j \). If the pivot is in the middle half of the current subarray, then we transition from phase \(j \) to phase \(j+1 \). This occurs with probability \(1/2 \), so the expected number of recursive calls in phase \(j \) is \(2 \). The computing time for each recursive call is linear in the size of the current subarray; so \(E[X_j] \leq 3n/4 \) (where \(E[X] \) denotes the expectation of a random variable). The total time of the algorithm is given by \(T = \sum_{j=0}^{\infty} X_j \). Therefore

\[
E[X] = \sum_{j=0}^{\infty} E[X_j] \leq 2m \sum_{j=0}^{\infty} (3/4)^j \text{ if } E[X] \in \Theta(n).
\]

TAKING SELECTION FURTHER

- We just showed:
 - QuickSelect with average case runtime in \(\Theta(n) \)

Next up:
- Median-of-medians QuickSelect (MOMQuickSelect)
 - worst case runtime in \(\Theta(n) \)

The algorithm we will see picks a good pivot in every recursive call.

Relies on getting a good pivot within \(O(1) \) recursive calls on average.

Must get a good pivot within \(O(1) \) recursive calls always.
HIGH LEVEL ALGORITHM

- Similar to QuickSelect
- **Choose** a pivot
- Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
- Recursively call MOMQuickSelect on one subarray
- Only difference is how we choose the pivot
- **Always** want to pick a **good pivot**

HOW GOOD IS THE PIVOT 23?

Recall median of each row

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
<th>Row 4</th>
<th>Row 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>14</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>12</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>33</td>
<td>36</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>34</td>
<td>49</td>
<td>47</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>34</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>37</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>31</td>
<td>24</td>
<td>48</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>50</td>
<td>34</td>
<td>35</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>47</td>
<td>46</td>
<td>49</td>
<td>41</td>
<td>42</td>
</tr>
</tbody>
</table>

Imagine sorting each row:

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
<th>Row 4</th>
<th>Row 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>22</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

If elements ≤ 23 is at least 3/5, this is at least 3/10ths of our 30-element input.

This is a good pivot

We recurse on A_d or A_u, and both have size at most $\lceil n/2 \rceil$

ALWAYS PICKING A GOOD PIVOT

Example input: $A[0..50]: [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]$

Group into rows of 5

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
</tbody>
</table>

Find median of each row

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
</tbody>
</table>

Build array of medians

$[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]$

Time complexity for this step?

$\mathcal{O}(n)$

Recursive find the median of these medians: 23

Recursive pivot used

MOMQuickSelect(k, n, A)

```plaintext
// base case
if n <= 14 then sort(A) and return A[k]
// divide and conquer to find medians
r = (n/3) / 10
medians[0...r-1] = new array for i = 1...r-1
B[i, 1] = A[(n/2-1)*r + 1],...,(n*r)]
sort(B)
medians[r] = B[r]
y = MOMQuickSelect(r, r, medians)
// divide and conquer to find rank k
if k <= y then return y
else if k <= y then return MOMQuickSelect(k, y, y, A)
else if k > y then return MOMQuickSelect(k, y, y, A)
```

Restructure(k, y, y)

```plaintext
A_d = [20, 21, 11, 12, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]
y = 15, y = 16
A_u = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]
k = 15 > y = 16
```

MOMQuickSelect(11, 14, A)

```plaintext
// base case
if n <= 14 then sort(A) and return A[k]
// divide and conquer to find medians
r = (n/3) / 10
medians[0...r-1] = new array for i = 1...r-1
B[i, 1] = A[(n/2-1)*r + 1],...,(n*r)]
sort(B)
medians[r] = B[r]
y = MOMQuickSelect(r, r, medians)
// divide and conquer to find rank k
if k <= y then return y
else if k <= y then return MOMQuickSelect(k, y, y, A)
else if k > y then return MOMQuickSelect(k, y, y, A)
```
HOW MUCH DOES THE PROBLEM SHRINK?

- Shrinks by at least $3(r+1)$
- Problem size $\approx n = 10r + 5$
- Subproblem size $\leq n - \text{Shrink} = n - 3(r+1)
 \quad = 10r + 5 - 3r - 3 = 7r + 2$
- Express in terms of n using $r = \frac{n-5}{10}$

\[
\text{Subproblem size} \leq \frac{n-5}{10} + 2 \leq \frac{n-5}{10} + 2
\]

\[
= \frac{5}{10} - 2 = \frac{5}{10}
\]

\[
T(n) \in O(n) + T(n/5) + T(7n/10)
\]

The key fact is that $1/5 + 7/10 = 10/20 = 1/2 < 1$

\[
T(n) \in O(n) + T(n/5) + T(7n/10)
\]

if $n \geq 15$

$T(n) \in O(1)$

if $n \leq 14$

The fact that $T(n) \in O(n)$ can be proven formally using guess-and-check (induction) or informally using the recursion tree method.

\[
T(n) \in O(n) + T(n/5) + T(7n/10)
\]

if $n \geq 15$

$T(n) \in O(1)$

if $n \leq 14$

The closest pair problem

When someone near you
coughs
THE CLOSEST PAIR PROBLEM

- Input: Set P of n 2D points
- Output: pair p and q s.t. dist(p, q) minimum over all pairs
- Break ties arbitrarily
- dist$(p, q) = (p.x - q.x)^2 + (p.y - q.y)^2$

Can we Divide & Conquer?

- Like non-dominated points: sort by x-axis & divide in half

Claim that doesn’t require a proof: closest pair (p, q):
1. (p, q) both in L or
2. (p, q) both in R or
3. One of (p, q) in L and one of (p, q) in R

Observation 1

- Let $\delta = \min(\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R))$
- Then pair, (if closest globally) lies in the above 2δ-wide green strip
- Q: Why?

Example for Observation 1

- Q: Can p be part of a globally closest pair s?
 - A: No. Everything in R has dist $> \delta$ to p.
 - And we already have a solution with dist = δ.

Observation 2

- Say, p (the lowest y valued point in strip) is in pair
- Has to be on the opposite side & can’t be $> \delta$ higher than p on y axis.
- Then the other point can only lie in this $3\delta \times 3\delta$ square.
- Q: Why?
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the $2\delta \times \delta$ above rectangle each time

Switching sides might complicate code... Turns out it’s not needed to get good time complexity.
A More Practical Idea

◆ Don’t differentiate between same and opposite side
◆ Just search the 2δxδ above rectangle each time

Claim: loop performs $O(1)$ iterations!
POINTS IN A $\delta \times \delta$ SQUARE

Recall δ is the smallest distance between any pair of points that are both in L or both in R.
- Note this square is entirely in L or entirely in R.

So, δ is the smallest distance between any pair of points in this square!

A point in the middle would rule out any other points.

So, most efficient packing of points puts one in each corner (4 total).

43

Obs: as many as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.

So, loop performs at most eight iterations.
- Each does $\Theta(1)$ work, so entire loop does $\Theta(1)$ work!
- So, findMinSpanningPair does $\Theta(n \log n)$ work.

Time complexity

- Let $T'(n)$ be runtime of findMinSpanningPair($P[1..n]$)
 - Sort P by y values causes findMinSpanningPair to take $\Theta(n \log n)$ time instead of $O(n)$ time
 - This happens in each recursive call, and dominates the running time
 - Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values

IMPROVING THIS RESULT FURTHER

- Sorting by y-values causes findMinSpanningPair to take $O(n \log n)$ time instead of $O(n)$ time
- This happens in each recursive call, and dominates the running time
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values

IMPROVING THE PREVIOUS ALGORITHM
Shamos’ algorithm (1975)

This selection step preserves the y-sort order

Observe P_L and P_U contain the same points (specifically the points with $x \leq x_{mid}$)

Moreover, P_L is sorted by x while P_U is sorted by y

And similarly for P_R, P_U

No need to sort in Recurse!

Time complexity

$T(n) = 2T(n/2) + O(n)$$\Rightarrow T(n) \in \Theta(n \log n)$

So runtime for Shamos’ algorithm is in $\Theta(n \log n)$

Total $\Theta(n)$ for this function