OPTIMALITY PROOF
for greedy interval selection
Goal: choose as many disjoint intervals as possible, (i.e., without any overlap)

Algorithm:

3. Sort the intervals in increasing order of finishing times. At any stage, choose the earliest finishing interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_i).
PROVING OPTIMALITY

- Consider an input $A[1..n]$
- Let G be the greedy solution
- Let O be an optimal solution
- “Greedy stays ahead” argument
 - Intuition: out of the a given set of intervals, greedy picks as many as optimal
How to compare G and O? *Imagine reordering* O to match G!
CRUCIAL: We are NOT assuming the optimal algorithm uses the same sort order!

We are merely imagining reordering the intervals chosen by the optimal algorithm so we can easily compare their finish times to intervals in G.
Now O' and G are both ordered by increasing finish time.
This ordering helps us leverage what we know about G in our comparison with O'.
Argue for a prefix of the intervals sorted this way, G chooses \textit{as many as} O'.
Looks like $f(G_1) \leq f(O'_1)$ and $f(G_2) \leq f(O'_2)$...

Is $f(G_i) \leq f(O'_i)$ for all i?

If this trend holds in general, then

out of the intervals with finish time $\leq f(O'_i)$

G chooses **as many** intervals as O'!
PROVING LEMMA: \(f(G_i) \leq f(O'_i) \) FOR ALL \(i \)

<table>
<thead>
<tr>
<th>O'</th>
<th>(O'_1)</th>
<th>(O'_2)</th>
<th>...</th>
<th>(O'_{i-1})</th>
<th>(O'_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>(G_1)</td>
<td>(G_2)</td>
<td>...</td>
<td>(G_{i-1})</td>
<td></td>
</tr>
</tbody>
</table>

Base case: \(f(G_1) \leq f(O'_1) \) since \(G \) chooses the interval with the earliest finish time first.
PROVING **LEMMA**: $f(G_i) \leq f(O_i')$ FOR **ALL** i

Inductive step: assume $f(G_{i-1}) \leq f(O_{i-1}')$. Show $f(G_i) \leq f(O_i')$.

- Since O' is feasible, $f(O_{i-1}') \leq s(O_i')$
- So $f(G_{i-1}) \leq s(O_i')$
- So G can choose O_i' if it has the smallest finish time
- So $f(G_i) \leq f(O_i')$
USING THIS LEMMA

- Suppose $|O'| > |G|$ to obtain a contradiction
 - So if G chooses k intervals, O' chooses at least $k + 1$
 - By the lemma, $f(G_k) \leq f(O_k)$
 - Since O' is feasible, $f(O'_k) \leq s(O'_{k+1})$
 - But then G can, and would, pick O'_{k+1}.
 - Contradiction!

So assumption $|O'| > |G|$ is wrong!

So G is optimal
A DIFFERENT PROOF

“Slick” ad-hoc approaches are sometimes possible…
Let $F = \{f_{i_1}, \ldots, f_{i_k}\}$ be the finishing times of the intervals in X

So, in addition to the intervals in X, only the following types of intervals are possible:

- Contains f_{i_1}
- Contains f_{i_2}
- Contains f_{i_1} and f_{i_2}

Thus, every interval contains some finishing time in F.

And, two intervals in O cannot contain the same element of F.

So, there must be as many finishing times in F as there are intervals in O. QED
KNAPSACK PROBLEMS
Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i \leq M$.

Gotta respect the weight limit M...
Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i \leq M$.

In the 0-1 Knapsack problem (often denoted just as Knapsack), we require that $x_i \in \{0, 1\}$, $1 \leq i \leq n$.

In the Rational Knapsack problem, we require that $x_i \in \mathbb{Q}$ and $0 \leq x_i \leq 1$, $1 \leq i \leq n$.

Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_i x_i$.

0-1 Knapsack: NP Hard. Probably requires exponential time to solve...

Rational knapsack: Can be solved in polynomial time by a greedy alg!

Lets discuss this now... other one later
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 1:** consider items in **decreasing** order of profit (i.e., we maximize the local evaluation criterion p_i)

• Let’s try an example input
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 10]$
 - Weight limit $M = 10$

• Algorithm selects last item for 100 profit
 - Looks optimal in this example
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 1**: consider items in **decreasing** order of profit (i.e., we maximize the local evaluation criterion p_i)

• How about a **second example input**
 • Profits $P = [20, 50, 100]$
 • Weights $W = [10, 20, 100]$
 • Weight limit $M = 10$

• Algorithm selects last item for 10 profit
 • **Not optimal!**
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 2:** consider items in *increasing* order of *weight* (i.e., we minimize the local evaluation criterion w_i)

• **Counterexample**
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 100]$
 - Weight limit $M = 10$
 - Algorithm selects first item for 20 profit
 - It *could* select half of second item, for 25 profit!
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 3:** consider items in decreasing order of profit divided by weight (i.e., we maximize local evaluation criterion p_i/w_i)

• Let’s try our first example input
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 10]$
 - Weight limit $M = 10$

• Profit divided by weight
 - $P/W = [2, 2.5, 10]$
 - Algorithm selects last item for 100 profit (optimal)
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

- **Strategy 3**: consider items in decreasing order of profit divided by weight (i.e., we maximize local evaluation criterion p_i/w_i)

- Let’s try our second example input
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 100]$
 - Weight limit $M = 10$

- Profit divided by weight
 - $P/W = [2, 2.5, 1]$

- Algorithm selects second item for 25 profit (optimal)

It turns out strategy #3 is optimal...
Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
 sort A by decreasing profit divided by weight
 let p[1..n] be the profits in A
 let w[1..n] be the weights in A
 return GreedyRationalKnapsack(p, w, M)

GreedyRationalKnapsack(p[1..n], w[1..n], M)
 X = [0, ..., 0] // No items are chosen yet
 weight = 0 // Current weight of knapsack

 for i = 1..n // For all items
 if weight + w[i] > M then
 X[i] = (M - weight) / w[i]
 break
 else
 X[i] = 1
 weight = weight + w[i]

 return X

Either X=(1,1,...,1,0,...,0) or X=(1,1,...,1,x_i,0,...,0) where x_i ∈ (0,1)
Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
 sort A by decreasing profit divided by weight
 let p[1..n] be the profits in A
 let w[1..n] be the weights in A
 return GreedyRationalKnapsack(p, w, M)

GreedyRationalKnapsack(p[1..n], w[1..n], M)
 X = [0, ..., 0]
 weight = 0

 for i = 1..n
 if weight + w[i] > M then
 X[i] = (M - weight) / w[i]
 break
 else
 X[i] = 1
 weight = weight + w[i]

 return X

Running time complexity?

Can do preprocessing in $\Theta(n \log n)$

Create array in $\Theta(n)$ time

$\Theta(n)$ iterations each doing $\Theta(1)$ work

Total $\Theta(n \log n)$
(or $\Theta(n)$ if input is already sorted)
INFORMAL FEASIBILITY ARGUMENT
(SHOULD BE GOOD ENOUGH TO SHOW FEASIBILITY ON ASSESSMENTS)

• Feasibility: all \(x_i \) are in \([0, 1]\) and total weight is \(\leq M \)

• Either everything fits in the knapsack, or:

• When we exit the loop, \textbf{weight is exactly} \(M \)

• Every time we write to \(x_i \) it’s either 0, 1 or
 \((M - \text{weight})/w_i\) where \(\text{weight} + w[i] > M \)

 • Rearranging the latter we get \((M - \text{weight})/w_i < 1\)

 • And \(\text{weight} \leq M \),
 so \((M - \text{weight})/w_i \geq 0\)

 • \textbf{So, we have} \(x_i \in [0, 1] \)
MINOR MODIFICATION TO FACILITATE FORMAL PROOF

```
GreedyRationalKnapsack(p[1..n], w[1..n], M)
    X = [0, ..., 0]
    weight = 0

    for i = 1..n
        if weight + w[i] > M then
            X[i] = (M - weight) / w[i]
            weight = M
            break
        else
            X[i] = 1
            weight = weight + w[i]

    return X
```

Optional slide, just for your notes

Does NOT change behaviour of the algorithm at all!
FORMAL FEASIBILITY ARG

- Loop invariant: $\forall i : x_i \in [0,1]$ and $\text{weight} = \sum_{i=1}^{n} w_i x_i \leq M$

- Base case. Initially weight = 0 and $\forall i : x_i = 0$.
- So $0 = \text{weight} = \sum_{i=1}^{n} w_i \cdot 0 = \sum_{i=1}^{n} w_i x_i \leq M$

- Inductive step.
 - Suppose invariant holds at start of iteration i
 - Let weight', x_i' denote values of weight, x_i at end of iteration i
 - Prove invariant holds at end of iteration i
 - i.e., $\forall i : x_i' \in [0,1]$ and $\text{weight}' = \sum_{i=1}^{n} w_i x_i' \leq M$

```python
for i = 1..n
    if weight + w[i] > M then
        X[i] = (M - weight) / w[i]
        weight = M
        break
    else
        X[i] = 1
        weight = weight + w[i]
```

Optional slide, just for your notes
FORMAL FEASIBILITY ARG

- **WTP**: \(\forall i : x'_i \in [0, 1] \) and \(\text{weight}' = \sum_{i=1}^{n} w_i x'_i \leq M \)

- **Case 1**: \(\text{weight} + w_i \leq M \)
 - \(x'_i = 1 \) which is in \([0, 1] \) (by line 11)
 - \(\text{weight}' = \text{weight} + w_i \) (by line 12)
 - and this is \(\leq M \) by the case
 - \(\text{weight}' = \sum_{k=1}^{n} x_k w_k + w_i \) (by invariant)
 - \(\text{weight}' = \sum_{k=1}^{n} x_k w_k + x'_i w_i \) (since \(x'_i = 1 \))
 - And \(x'_k = x_k \) for all \(k \neq i \) and \(x_i = 0 \) so \(\sum_{k=1}^{n} x'_k w_k = x'_i w_i + \sum_{k=1}^{n} x_k w_k \)
 - Rearrange to get \(\sum_{k=1}^{n} x_k w_k = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i) \)
 - So \(\text{weight}' = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i) + x'_i w_i = \sum_{k=1}^{n} x'_k w_k \)

Optional slide, just for your notes

```
for i = 1..n
  if weight + w[i] > M then
    X[i] = (M - weight) / w[i]
    weight = M
    break
  else
    X[i] = 1
    weight = weight + w[i]
```
FORMAL FEASIBILITY ARG

- **WTP:** \(\forall i : x'_i \in [0, 1] \) and \(\text{weight}' = \sum_{i=1}^{n} w_i x'_i \leq M \)
- **Case 2:** \(\text{weight} + w_i > M \)
 - We have \(w_i > M - \text{weight} \) (by case)
 - \(M - \text{weight} \geq 0 \) (by invariant)
 - So \(0 \leq \frac{M - \text{weight}}{w_i} < 1 \) which means \(x'_i \in [0, 1) \)
- **weight'** = \(M = \text{weight} + (M - \text{weight}) \) (by line 8)
- **weight'** = \(\sum_{k=1}^{n} x_k w_k + (M - \text{weight}) \) (by invariant)
 - But \(x'_k = x_k \) for all \(k \neq i \) and \(x_i = 0 \) so \(\sum_{k=1}^{n} x'_k w_k = x'_i w_i + \sum_{k=1}^{n} x_k w_k \)
 - Rearrange to get \(\sum_{k=1}^{n} x_k w_k = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i) \)
 - So \(\text{weight}' = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i) + (M - \text{weight}) \)
 - And \(M - \text{weight} = x'_i w_i \) so **weight'** = \(\sum_{k=1}^{n} x'_k w_k \)

```plaintext
for i = 1..n
  if weight + w[i] > M then
    X[i] = (M - weight) / w[i]
    weight = M
    break
  else
    X[i] = 1
    weight = weight + w[i]
```

Optional slide, just for your notes.
EXCHANGE ARGUMENT

for proving optimality
OPTIMALITY – AN **EXCHANGE ARGUMENT**

For simplicity, assume that the profit / weight ratios are all distinct, so

\[
\frac{p_1}{w_1} > \frac{p_2}{w_2} > \cdots > \frac{p_n}{w_n}.
\]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \).

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

\(X \) and \(Y \) are **identical** up to \(x_j \) and \(y_j \), respectively.
What's the relationship between x_j and y_j?
Greedy solution X

j = first index where the solutions differ

Optimal solution Y

Can we have $y_j > x_j$?

No! Greedy would take more of item j if it could.
Greedy solution X:

- x_1, x_2, ..., x_j are fractions of items in the knapsack.

Optimal solution Y:

- y_1, y_2, ..., y_j are fractions of items in the knapsack.

$j =$ first index where the solutions differ

Fraction of item in knapsack

- x_1, x_2, ..., x_j for Greedy solution.
- y_1, y_2, ..., y_j for Optimal solution.

For item j:

- $x_j = y_j < x_j$ (must have this condition).

$(x_j - y_j)$

33
Greedy solution X

Optimal solution Y

$j =$ first index where the solutions differ

Can Y be all zeros after y_j?

No! It would be worth less than X
Greedy solution X

Optimal solution Y

\[j = \text{first index where the solutions differ} \]

Must exist \(k > j \) such that \(y_k > 0 \)

But, by our sort order, item \(j \) is worth more (per unit of weight) than item \(k \)!

Remove some of item \(k \) and replace it with some of item \(j \)?

How much of item \(k \) should we remove?

fraction of item in knapsack

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>\ldots</th>
<th>Item (j)</th>
<th>Item (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>\ldots</td>
<td>(x_{j-1})</td>
<td>(x_j)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>\ldots</th>
<th>Item (j)</th>
<th>Item (k)</th>
<th>Item (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(y_2)</td>
<td>\ldots</td>
<td>(y_{j-1})</td>
<td>(y_j)</td>
<td>(y_k)</td>
</tr>
</tbody>
</table>
Greedy solution X

Optimal solution Y

$j = \text{first index where the solutions differ}$

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add δ weight of item j.

36
Greedy solution X

Modified optimal solution Y'

j = first index where the solutions differ

To move δ weight from item k to item j...

What fraction of item k are we removing?

$\delta \frac{w_k}{w_j}$

What fraction of item j are we adding?

$\delta \frac{w_j}{w_j}$

$y'_j = y_j + \delta w_j$

$y'_k = y_k - \delta w_k$
Modified optimal solution Y'

To show Y' is feasible, we show $y_k' \geq 0, y_j' \leq 1$ and $\text{weight}(Y') \leq M$.

The idea is to show that

Y' is feasible, and

$\text{profit}(Y') > \text{profit}(Y)$.

This contradicts the optimality of Y and proves that $X = Y$.
FEASIBILITY OF Y'

- To show Y' is feasible, we show $y'_k \geq 0$, $y'_j \leq 1$ and $\text{weight}(Y') \leq M$
- Let's show $y'_k \geq 0$
 - By definition, $y'_k = y_k - \frac{\delta}{w_k}$
 - So, $y'_k \geq 0$ iff $y_k - \frac{\delta}{w_k} \geq 0$ iff $\delta \leq y_k w_k$
 - And we know y_k and w_k are both positive
 - So, this constrains δ to be smaller than this positive number
 - Therefore, it is possible to choose positive δ s.t. $y'_k \geq 0$

Existence proof, but a non-constructive one
FEASIBILITY OF Y'

• To show Y' is feasible, we show $y'_k \geq 0$, $y'_j \leq 1$ and $\text{weight}(Y') \leq M$

• Now let's show $y'_j \leq 1$

 • By definition, $y'_j = y_j + \frac{\delta}{w_j}$

 • So, $y'_j \leq 1$ iff $y_j + \frac{\delta}{w_j} \leq 1$ iff $\delta \leq (1 - y_j)w_j$

• Recall $y_j < x_j$, so $y_j < 1$, which means $(1 - y_j) > 0$

• So, this constrains δ to be smaller than some positive number
Finally, we show $\text{weight}(Y') \leq M$

Recall changes to get Y' from Y
- We move δ weight from item k to item j
- This does not change the total weight!

So $\text{weight}(Y') = \text{weight}(Y) \leq M$
- Therefore, Y' is feasible!
SUPERIORITY OF Y'

• Finally we compute $profit(Y')$

\[
profit(Y') = profit(Y) + \delta \frac{p_j}{w_j} - \delta \frac{p_k}{w_k}
\]

• \[= profit(Y) + \delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right)\]

• Since j is before k, and we consider items with more profit per unit weight first, we have \[\frac{p_j}{w_j} > \frac{p_k}{w_k}\].

• So, if $\delta > 0$ then \[\delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right) > 0\]

• Since we can choose $\delta > 0$, we have \[profit(Y') > profit(Y)\].

(Fraction of item j added) \times (profit for item j)

(Fraction of item k removed) \times (profit for item k)

Contradicts optimality of Y!
So assumption $X \neq Y$ is bad. Therefore, X is optimal.
WHAT IF ELEMENTS DON’T HAVE DISTINCT PROFIT/WEIGHT RATIOS?
OPTIMALITY PROOF WITHOUT DISTINCTNESS

• There may be many optimal solutions

• **Key idea:** Let Y be an optimal solution that matches X on a **maximal** number of indices

• **Observe:** if X is really optimal, then $Y = X$

• Suppose not for contra
 • We will modify Y, preserving its optimality, but making it match X on **one more index** (a contradiction!)
Greedy solution X:

- fraction of item i in knapsack:
 - x_1, x_2, \ldots, x_{j-1}, x_j

Optimal solution Y:

- fraction of item i in knapsack:
 - y_1, y_2, \ldots, y_{j-1}

$j = \text{first index where the solutions differ}$

$y_j \neq x_j$
Greedy solution X

Optimal solution Y

fraction of item in knapsack

Item 1 Item 2 Item j Item n

Must have $y_j < x_j$
Greedy solution X

Must exist $k > j$ such that $y_k > x_k$ because weight of X and Y must be the same

Remove some weight δ of item k and add the same weight of item j

With the goal of making the solutions equal on index k or index j

Fraction we should add to j to make solutions equal on index j: $x_j - y_j$

Optimal solution Y

Fraction we should remove from k to make solutions equal on index k: $y_k - x_k$

Weight to add: $w_j(x_j \cdot y_j)$

Weight to remove: $w_k(y_k \cdot x_k)$

Let $\delta = \min\{w_j(x_j - y_j), w_k(y_k - x_k)\}$

Observe $\delta > 0$
Greedy solution X

Fraction of item in knapsack

Optimal solution Y

Suppose $\delta = w_k(y_k - x_k)$

Modified optimal solution Y'

In this case, since $\delta = w_k(y_k - x_k)$, we end up with $y_k' = x_k$

If δ were $w_j(x_j - y_j)$, we would have $y_j' = x_j$
To show Y' is feasible, we show $weight(Y') \leq M$ and $y'_k \geq 0$, $y'_j \leq 1$

Weight

We move δ weight from item k to item j

This does not change the total weight!

So $weight(Y') = weight(Y) = M$
FEASIBILITY OF Y'

• Showing $y'_k \geq 0$

 • By definition, $y'_k = y_k - \frac{\delta}{w_k} \geq 0$ iff $\delta \leq y_k w_k$

 • But δ is the minimum of $w_j(x_j - y_j)$ and $w_k(y_k - x_k) \leq w_k y_k$.

 • And $w_k(y_k - x_k) \leq w_k y_k$ so $\delta \leq y_k w_k$.

• Showing $y'_j \leq 1$

 • $y'_j = y_j + \frac{\delta}{w_j} \leq 1$ iff $\frac{\delta}{w_j} \leq 1 - y_j$ iff $\delta \leq w_j(1 - y_j)$ (rearranging)

 • $\delta \leq w_j(x_j - y_j)$ (definition of δ)

 • and $w_j(x_j - y_j) \leq w_j(1 - y_j)$ (by feasibility of X, i.e., $x_j \leq 1$)
PROFIT OF Y'

- $\text{profit}(Y') = \text{profit}(Y) + \frac{\delta}{w_j} p_j - \frac{\delta}{w_k} p_k = \text{profit}(Y) + \delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right)$

- Since j is before k, and we consider items with more profit per unit weight first, we have $\frac{p_j}{w_j} \geq \frac{p_k}{w_k}$.

- Since $\delta > 0$ and $\frac{p_j}{w_j} \geq \frac{p_k}{w_k}$, we have $\delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right) \geq 0$

- Since Y is optimal, this cannot be positive

- So Y' is a new optimal solution that matches X on one more index than Y

- Contradiction: Y matched X on a maximal number of indices!
SUMMARIZING EXCHANGE ARGUMENTS

• If inputs are distinct
 • So there is a unique optimal solution
 • Let \(O \neq G \) be an optimal solution that beats greedy
 • Show how to change \(O \) to obtain a better solution

• If not
 • There may be many optimal solutions
 • Let \(O \neq G \) be an optimal solution that matches greedy on as many choices as possible
 • Show how to change \(O \) to obtain an optimal solution \(O' \) that matches greedy for even more choices
• I don’t think we will have time to get past here.
• But if we do, great, we can catch up.
INTERVAL COLOURING
PROBLEM: INTERVAL COLOURING

Instance: A set \(A = \{A_1, \ldots, A_n\} \) of intervals.
For \(1 \leq i \leq n \), \(A_i = [s_i, f_i) \), where \(s_i \) is the start time of interval \(A_i \) and \(f_i \) is the finish time of \(A_i \).

Feasible solution: A \(c \)-colouring is a mapping \(\text{col} : A \rightarrow \{1, \ldots, c\} \) that assigns each interval a colour such that two intervals receiving the same colour are always disjoint.

Find: A \(c \)-colouring of \(A \) with the minimum number of colours.

Example: 7 intervals, 7 colours. Feasible, but not optimal.
Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first \(i < n \) intervals using \(d \) colours.

We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d \) colours, then we introduce a new colour and \(d \) is increased by 1.

Question: In what order should we consider the intervals?
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE: ORDER MATTERS!

Consider intervals in the order they are given in the input: \(A_1 \ldots A_{10}\)
EXAMPLE: ORDER MATTERS!

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
</tr>
</tbody>
</table>

x-axis
EXAMPLE: ORDER MATTERS!

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
<th>A₉</th>
<th>A₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE:
ORDER MATTERS!

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td>1</td>
</tr>
</tbody>
</table>

x-axis
EXAMPLE: ORDER MATTERS!
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(A_3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(A_4)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(A_5)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(A_6)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(A_7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{10})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis
EXAMPLE:
ORDER MATTERS!
EXAMPLE:
ORDER MATTERS!

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>1</td>
</tr>
<tr>
<td>A_3</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
</tr>
<tr>
<td>A_5</td>
<td>3</td>
</tr>
<tr>
<td>A_6</td>
<td>2</td>
</tr>
<tr>
<td>A_7</td>
<td>4</td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_10</td>
<td></td>
</tr>
</tbody>
</table>

x-axis
EXAMPLE: ORDER MATTERS!
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th>A₁</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₂</td>
<td>1</td>
</tr>
<tr>
<td>A₃</td>
<td>2</td>
</tr>
<tr>
<td>A₄</td>
<td>2</td>
</tr>
<tr>
<td>A₅</td>
<td>3</td>
</tr>
<tr>
<td>A₆</td>
<td>2</td>
</tr>
<tr>
<td>A₇</td>
<td>4</td>
</tr>
<tr>
<td>A₈</td>
<td>2</td>
</tr>
<tr>
<td>A₉</td>
<td>4</td>
</tr>
<tr>
<td>A₁₀</td>
<td>3</td>
</tr>
</tbody>
</table>

Used 4 colours

Can we do better?
EXAMPLE: ORDER MATTERS!

Pre-sort intervals by increasing start time!
EXAMPLE: ORDER MATTERS!

Pre-sort intervals by increasing start time!
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
<th>A₉</th>
<th>A¹₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE:
ORDER MATTERS!
EXAMPLE: ORDER MATTERS!
Example: Order Matters!
Example: Order Matters!

<table>
<thead>
<tr>
<th>A1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
</tr>
</tbody>
</table>

x-axis
EXAMPLE:
ORDER
MATTERS!

<table>
<thead>
<tr>
<th>A1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: ORDER MATTERS!
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>2</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE:
ORDER MATTERS!
EXAMPLE:

ORDER MATTERS!

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Used **3** colours

Can we do better?

x-axis

0 2 4 6 8 10 12 14 16 18 20
Consider interval $A_i = (s_i, f_i)$. If $s_i \geq \text{finish}[c]$, then we can give A_i colour c without breaking feasibility.

If we didn’t reuse a colour, use a new colour.

Check if we can reuse any colour c in 1..d.

For each interval A_i, search for an appropriate colour c.

$finish[c] = \text{finish time of last interval to receive colour } c$
EXAMPLE: RUNNING GREEDY

Initial state
EXAMPLE: RUNNING GREEDY

Code before the loop: just assign colour 1

| A_1 | | | | | | | | | | | | |
|-------|---|---|---|---|---|---|---|---|---|---|---|
| A_2 | | | | | | | | | | | |
| A_3 | | | | | | | | | | | |
| A_4 | | | | | | | | | | | |
| A_5 | | | | | | | | | | | |
| A_6 | | | | | | | | | | | |
| A_7 | | | | | | | | | | | |
| A_8 | | | | | | | | | | | |
| A_9 | | | | | | | | | | | |
| A_{10} | | | | | | | | | | | |

$i = 1$
$d = 1$
$\text{finish}[1] = 83$

x-axis
EXAMPLE:
RUNNING GREEDY

While loop over c. Check if we can reuse a color in $1..d$

Is $\text{finish}[1] \leq s_2$?

No. We cannot reuse colour 1.

Cannot reuse any colour. Create a new one!
Example: Running Greedy

While loop over c. Check if we can reuse a color in $1..d$

<table>
<thead>
<tr>
<th>A_i</th>
<th>$i=2$</th>
<th>$d=2$</th>
<th>$\text{finish}[1]$</th>
<th>$\text{finish}[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is $\text{finish}[1] \leq s_2$?

No. We cannot reuse colour 1. Cannot reuse any colour. Create a new one!
EXAMPLE:

RUNNING GREEDY

While loop over \(c \). Check if we can reuse a color in \(1..d \).

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
<th>(A_7)</th>
<th>(A_8)</th>
<th>(A_9)</th>
<th>(A_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[i = 3 \]
\[d = 2 \]

Is \(\text{finish}[1] \leq s_3 \)?

No. We cannot reuse colour 1.

Is \(\text{finish}[2] \leq s_3 \)?

No. We cannot reuse colour 2.

Cannot reuse any colour. Create new one.
EXAMPLE:

RUNNING GREEDY

<table>
<thead>
<tr>
<th>A1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
</tr>
</tbody>
</table>

- **While loop over c.** Check if we can reuse a color in 1..d.
- **Is \(\text{finish}[1] \leq s_3\)?**
 - No. We cannot reuse colour 1.
- **Is \(\text{finish}[2] \leq s_3\)?**
 - No. We cannot reuse colour 2.
- **Cannot reuse any colour. Create new one.**
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in $1..d$.

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish times:
- $\text{finish}[1]=8$
- $\text{finish}[2]=4$
- $\text{finish}[3]=1$

Is $\text{finish}[1] \leq s_4$?

Yes. We can reuse color 1.
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in $1..d$

Is $\text{finish}[1] \leq s_4$?
Yes. We can reuse colour 1.
EXAMPLE: RUNNING GREEDY

While loop over \(c \).
Check if we can reuse a color in \(1..d \).

Is \(\text{finish}[1] \leq s_5 \)?
No. We \textbf{cannot} reuse colour 1.

Is \(\text{finish}[2] \leq s_5 \)?
No. We \textbf{cannot} reuse colour 2.

Is \(\text{finish}[3] \leq s_5 \)?
Yes. We \textbf{can} reuse colour 3.
Example: Running Greedy

While loop over c. Check if we can reuse a color in $1..d$.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $i=5$, $d=3$
- $f_{\text{finish}}[1] = f_{\text{finish}}[2] = f_{\text{finish}}[3]$

Is $f_{\text{finish}}[1] \leq s_5$?
- No. We **cannot** reuse colour 1.

Is $f_{\text{finish}}[2] \leq s_5$?
- No. We **cannot** reuse colour 2.

Is $f_{\text{finish}}[3] \leq s_5$?
- Yes. We **can** reuse colour 3.
EXAMPLE:

RUNNING GREEDY

While loop over c. Check if we can reuse a color in $1..d$.

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

While loop over c.

Check if we can reuse a color in $1..d$.

- $i = 6$
- $d = 3$
- $\text{finish}[1] = 7$
- $\text{finish}[2] = 8$
- $\text{finish}[3] = 12$

Is $\text{finish}[1] \leq s_6$? **No.** We cannot reuse color 1.

Is $\text{finish}[2] \leq s_6$? **Yes.** We can reuse color 2.
While loop over c. Check if we can reuse a color in $1..d$.

EXAMPLE:

RUNNING GREEDY

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_i</td>
<td></td>
</tr>
</tbody>
</table>

- $f[1] = 1$
- $f[2] = 2$
- $f[3] = 3$

Is $f[1] \leq s_6$?

No. We **cannot** reuse colour 1.

Is $f[2] \leq s_6$?

Yes. We **can** reuse colour 2.

And so on, and so forth…
Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well as by a “slick” method—we give the “slick” proof:

Let D denote the number of colours used by the algorithm.

Let F_D be the first interval that has the last colour D

Let L_c be the last interval that has colour c and starts before F_D ends

We prove F_D overlaps every interval L_c for all $c < D$

If $D = 1$ the proof is immediate, so suppose $D \geq 2$
Let F_D be the \textbf{first} interval that has \textbf{colour} D

Let L_c be the \textbf{last} interval that has \textbf{colour} c and \textbf{starts before} F_D \textbf{ends}

We prove F_D \textbf{overlaps every interval} L_c for all $c < D$

Let’s argue L_1 overlaps F_D

Note L_1 must exist (otherwise greedy would just use colour 1 for F_D)

And $\text{finish}[L_1]$ must be \textbf{after} F_D starts (same reason)

Same argument applies to $L_2, ..., L_{D-1}$

So, F_D overlaps $D - 1$ intervals!

Moreover, every interval in $\{L_1, ..., L_{D-1}\}$ \textbf{contains the starting time} of F_D

So, we must use D colours!
TIME COMPLEXITY?

Preprocess($A[1..n]$)
1. sort A by increasing start time
2. let $s[1..n]$ be the start times in A
3. let $f[1..n]$ be the finish times in A
4. return GreedyIntervalColouring(s, f)

GreedyIntervalColouring($s[1..n], f[1..n]$)
5. $d = 1$
6. colour[1] = 1
8. for $i = 2..n$
9. reused = false
10. for $c = 1..d$
11. if $finish[c] \leq s[i]$ then
12. colour[i] = c
13. finish[c] = $f[i]$
14. reused = true
15. break
16. if not reused then
17. $d++$
18. colour[i] = d
19. finish[d] = $f[i]$
20. return d

$O(n \log n)$

Total $O(n \log n + nd)$

Could be $O(n \log n)$ if only a constant number of colours are needed (or even $\log n$ colours!)

Could be $O(n^2)$ if n colours are needed

Most accurate complexity statement is $\Theta(n \log n + nD)$ where D is # colours used

What inefficiencies exist in this algorithm? Could we make it faster with clever data structure usage?
• Current greedy algorithm:
 • For each interval A_i, compare its start time s_i with the $finish[c]$ times of all colours introduced so-far
 • Why? Looking for some $finish[c]$ time that is earlier than s_i
 • We are doing linear search… Can we do better?
 • Use a priority queue to keep track of the earliest $finish[c]$ at all times in the algorithm
 • Then we only need to look at minimum element
EXAMPLE: HEAP-BASED ALGORITHM

Initial state

Min element: NULL

Heap

x-axis
EXAMPLE:
HEAP-BASED ALGORITHM

Min element: NULL

Heap

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Iteration i=1
Check heap minimum
Empty, so a new colour is needed

x-axis
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3
Heap: finish at time 3

Iteration i=1
Check heap minimum
Empty, so a new colour is needed

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3
Heap: finish at time 3

Iteration i=2
Check heap minimum
Check if finish time 3 is before s_2
No. New colour!

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

Finish at time 3
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3
Heap finish at time 3
finish at time 7

<table>
<thead>
<tr>
<th>Iteration i=2</th>
<th>Check heap minimum</th>
<th>Check if finish time 3 is before s_2</th>
<th>No. New colour!</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

Finish at time 3

No. New colour!
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3

Check heap minimum

Check if finish time 3 is before s_3

No. New colour!

<table>
<thead>
<tr>
<th>Iteration i=3</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check if finish time 3 is before s_3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Finish at time 3

No. New colour!
EXAMPLE: HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th>i</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Min element: finish at time 3

Heap: finish at time 3, finish at time 7, finish at time 5

x-axis:

- Iteration i=3
- Check heap minimum
- Check if finish time 3 is before s_3
- No. New colour!
EXAMPLE: HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td></td>
</tr>
<tr>
<td>i=2</td>
<td></td>
</tr>
<tr>
<td>i=3</td>
<td></td>
</tr>
<tr>
<td>i=4</td>
<td></td>
</tr>
</tbody>
</table>

Min element: finish at time 3

Heap:
- Finish at time 3
- Finish at time 7
- Finish at time 5

<table>
<thead>
<tr>
<th>Iteration i=4</th>
<th>Check heap minimum</th>
<th>Check if finish time 3 is before s_4</th>
<th>Yes. Reuse colour, deleteMin and insert new finish time into heap!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE:

HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th>A1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>4</td>
</tr>
<tr>
<td>A5</td>
<td>5</td>
</tr>
<tr>
<td>A6</td>
<td>6</td>
</tr>
<tr>
<td>A7</td>
<td>7</td>
</tr>
<tr>
<td>A8</td>
<td>8</td>
</tr>
<tr>
<td>A9</td>
<td>9</td>
</tr>
<tr>
<td>A10</td>
<td>10</td>
</tr>
</tbody>
</table>

Min element:
- Finish at time 5

Heap
- Finish at time 7
- Finish at time 5

Iteration i=4
- Check heap minimum
- Check if finish time 3 is before s_4

x-axis

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!
Example: Heap-Based Algorithm

Min element: finish at time 5

Heap:
- finish at time 9
- finish at time 7
- finish at time 5

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Check heap minimum</th>
<th>Check if finish time 3 is before s_4</th>
<th>Yes. Reuse colour, deleteMin and insert new finish time into heap!</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1	1
A2	2
A3	3
A4	4
A5	
A6	
A7	
A8	
A9	
A10	

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th>Iteration i=5</th>
<th>Check heap minimum</th>
<th>Check if finish time 5 is before s_5</th>
<th>Yes. Reuse colour, deleteMin and insert new finish time into heap!</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Min element: finish at time 5

Heap
- finish at time 9
- finish at time 7
- finish at time 5

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 7
Heap: finish at time 9, finish at time 7

A1 1
A2 2
A3 3
A4
A5
A6
A7
A8
A9
A10

Iteration i=5
Check heap minimum
Check if finish time 5 is before s_5

Yes. Reuse colour, deleteMin and insert new finish time into heap!

x-axis
EXAMPLE: HEAP-BASED ALGORITHM

Min element:
- Finish at time 7

Heap:
- Finish at time 9
- Finish at time 7
- Finish at time 13

<table>
<thead>
<tr>
<th>Iteration i=5</th>
<th>Check heap minimum</th>
<th>Check if finish time 5 is before s_5</th>
<th>Yes. Reuse colour, deleteMin and insert new finish time into heap!</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

110
EXAMPLE: HEAP-BASED ALGORITHM

Iteration i=6
Check heap minimum
Check if finish time 7 is before s_6

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
<th>A₉</th>
<th>A₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Min element: finish at time 7

Heap

- finish at time 9
- finish at time 7
- finish at time 13

x-axis
Example: Heap-Based Algorithm

Min element: finish at time 9

Heap:
- finish at time 9
- finish at time 13

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Check heap minimum</th>
<th>Check if finish time 7 is before s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=6</td>
<td></td>
<td>Yes. Reuse colour, deleteMin and insert new finish time into heap!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
</tr>
</tbody>
</table>

x-axis:
- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20

Finish times:
- A_1: 9
- A_2: 13
- A_3: 9
- A_4: 9
- A_5: 13
- A_6: 9
- A_7: 9
- A_8: 9
- A_9: 9
- A_{10}: 9

Note: The diagram shows the progression of tasks scheduled over time, with each task represented by a vertical bar indicating its duration.
EXAMPLE: HEAP-BASED ALGORITHM

Min element:
- **A1:** finish at time 9
- **A2:** finish at time 9
- **A3:** finish at time 11
- **A4:** finish at time 13

Heap:
- **A1:** finish at time 9
- **A2:** finish at time 9
- **A3:** finish at time 11
- **A4:** finish at time 13
- **A5:** finish at time 11
- **A6:** finish at time 13
- **A7:** finish at time 11
- **A8:** finish at time 13
- **A9:** finish at time 11
- **A10:** finish at time 13

Iteration i=6
- **Check heap minimum**
- **Check if finish time 7 is before s₆**

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!

And so on, and so forth…
Preprocess(A[1..n])
 sort A by increasing start time
 let s[1..n] be the start times in A
 let f[1..n] be the finish times in A
 return GreedyIntervalColouring(s, f)

GreedyIntervalColouring(s[1..n], f[1..n])
 d = 1
 colour[1] = 1
 h = new minPQ
 h.insert([[f[1], colour[1]]])
 for i = 2..n
 (fc, c) = h.min()
 if fc <= s[i] then
 h.deleteMin()
 colour[i] = c
 else
 d++
 colour[i] = d
 h.insert([[f[i], colour[i]]])
 return d

\(O(\log S)\) where \(S = \text{size(priority queue)}\)

\(O(1)\)

\(O(\log D)\)

\(O(\log D)\)

Total \(\Theta(n \log n) + \Theta(n \log D)\)

Since \(n \geq D\), \(\Theta(n \log n)\)