
CS 341: ALGORITHMS
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ASSUMED: PROFIT / WEIGHT RATIOS 

ARE DISTINCT

2

LAST TIME: EXCHANGE ARGUMENT 

FOR INTERVAL SELECTION



WHAT IF PROFIT/WEIGHT RATIOS 

ARE NOT DISTINCT?
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OR, MORE GENERALLY,

WHAT IF THERE ARE MANY OPT SOLUTIONS?



WHAT IF THERE ARE MANY OPTIMAL SOLUTIONS

• Can’t just assume X != Y and obtain a contradiction!

• Key idea: focus on one particular optimal solution

• Let 𝑌 be an optimal solution

that matches 𝑿 on a maximal number of indices

• Observe: if 𝑋 is really optimal, then 𝑌 = 𝑋

• Suppose X != Y for contra

• We will modify 𝑌, preserving its optimality,

but making it match 𝑋 on one more index (a contradiction!)
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Greedy 
solution X

Optimal 
solution Y
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j = first index where the 

solutions differ

yj ≠ xj
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Greedy 
solution X

Optimal 
solution Y

x1 x2

fraction of 
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knapsack

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj-1
… y1 y2

yj-1
…

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

yj

Must have

yj < xj
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Greedy 
solution X

Optimal 

solution Y

x1 x2

fraction of 

item in 

knapsack

0
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yj

It
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m
 k

Must exist k > j such that yk > xk because 

weight of 𝑋 and 𝑌 must be the same

yk

Remove some weight 𝜹 of item k and

add the same weight of item j

With the goal of making the solutions 

equal on index k or index j

It
e

m
 k

xk

Fraction we should add 

to j to make solutions 
equal on index j: 𝒙𝒋 − 𝒚𝒋

Fraction we should 

remove from k to 

make solutions equal 
on index k: 𝒚𝒌 − 𝒙𝒌

Let 𝜹 = 𝐦𝐢𝐧{𝒘𝒋 𝒙𝒋 − 𝒚𝒋 , 𝒘𝒌 𝒚𝒌 − 𝒙𝒌 }

Observe 𝛿 > 0

Weight to add: 

𝒘𝒋 𝒙𝒋 − 𝒚𝒋

Weight to 

remove: 

𝒘𝒌 𝒚𝒌 − 𝒙𝒌
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Greedy 
solution X

Optimal 
solution Y

x1 x2
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item in 

knapsack
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Suppose 𝜹 = 𝒘𝒌 𝒚𝒌 − 𝒙𝒌

Modified optimal 
solution Y’ y1 y2

yj-1
…

0

1

yj’

𝑦𝑗
′ = 𝑦𝑗 +

𝜹

𝒘𝒋 𝑦𝑘
′ = 𝑦𝑘 −

𝜹

𝒘𝒌

yk’
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xj

If 𝛿 were 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 , we would have 𝑦𝑗
′ = 𝑥𝑗

In this case, since 𝛿 = 𝑤𝑘 𝑦𝑘 − 𝑥𝑘 ,
we end up with 𝑦𝑘

′ = 𝑥𝑘



To show 𝑌′ is feasible, we show 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌′ ≤ 𝑀 and 𝑦𝑘
′ ≥ 0, 𝑦𝑗

′ ≤ 1

Modified optimal 
solution Y’

We move 𝛿 weight from item 𝑘 to item 𝑗
This does not change the total weight!
So 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌′ = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌 = 𝑀

Weight
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y1 y2
yj-1

…

0

1

yj’

𝑦𝑗
′ = 𝑦𝑗 +

𝜹

𝒘𝒋 𝑦𝑘
′ = 𝑦𝑘 −

𝜹

𝒘𝒌

yk’



FEASIBILITY OF 𝒀′

• Showing 𝑦𝑘
′ ≥ 0

• By definition, 𝑦𝑘
′ = 𝑦𝑘 −

𝛿

𝑤𝑘
≥ 0 iff 𝜹 ≤ 𝒚𝒌𝒘𝒌

• But 𝛿 is the minimum of 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 and 𝑤𝑘(𝑦𝑘 − 𝑥𝑘)

• And 𝑤𝑘(𝑦𝑘 − 𝑥𝑘) ≤ 𝑤𝑘𝑦𝑘 so 𝜹 ≤ 𝒚𝒌𝒘𝒌

• Showing 𝑦𝑗
′ ≤ 1

• 𝑦𝑗
′ = 𝑦𝑗 +

𝛿

𝑤𝑗
≤ 1 iff 𝜹 ≤ 𝒘𝒋 𝟏 − 𝒚𝒋 (rearranging)

• 𝛿 ≤ 𝒘𝒋 𝒙𝒋 − 𝒚𝒋 (definition of 𝛿)

• and 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 ≤ 𝒘𝒋 𝟏 − 𝒚𝒋 (by feasibility of X, i.e., 𝑥𝑗 ≤ 1)

10



PROFIT OF 𝒀′

• 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌′ = 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌 +
𝛿

𝑤𝑗
𝑝𝑗 −

𝛿

𝑤𝑘
𝑝𝑘 = 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌 + 𝛿

𝑝𝑗

𝑤𝑗
−

𝑝𝑘

𝑤𝑘

• Since j is before k, and we consider items with more profit per 

unit weight first, we have 
𝑝𝑗

𝑤𝑗
≥

𝑝𝑘

𝑤𝑘
.

• Since 𝛿 > 0 and 
𝑝𝑗

𝑤𝑗
≥

𝑝𝑘

𝑤𝑘
, we have 𝛿

𝑝𝑗

𝑤𝑗
−

𝑝𝑘

𝑤𝑘
≥ 0

• Since 𝑌 is optimal, this cannot be positive

• So 𝑌′ is a new optimal solution

that matches 𝑿 on one more index than 𝒀

• Contradiction: 𝑌 matched 𝑋 on a maximal number of indices!

(Fraction of item j added) × (profit for entire item)
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SUMMARIZING EXCHANGE ARGUMENTS

• If there is a unique optimal solution

• Let O != G be an optimal solution that beats greedy

• Show how to change O to obtain a better solution

• If there is more than one optimal solution

• Let O != G be an optimal solution that matches greedy 

on as many choices as possible

• Show how to change O to obtain an optimal solution 

O’ that matches greedy for even more choice(s)
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FINISHING UP GREEDY
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INTERVAL COLOURING

14



PROBLEM: INTERVAL COLOURING

Example

7 intervals,

7 colours.

Feasible, but

not optimal
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MORE EXAMPLES

Example Not feasible!

Example

7 intervals,

6 colours.

Feasible, but

not optimal

Example

7 intervals,

2 colours.

Optimal

Same color,

but not disjoint…

Same color,

but disjoint. OK!

Same color,

but disjoint. OK!
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EXAMPLE:

ORDER 

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Consider intervals in 

the order they are 

given in the input: 
𝑨𝟏 … 𝑨𝟏𝟎
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9 4

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9 4

A10 3

x-axis

0 2 4 6 8 10 12 14 16 18 20

Used 4 colours

Can we do better?
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EXAMPLE:

ORDER 

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Pre-sort intervals by 

increasing start time!
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EXAMPLE:

ORDER 

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Pre-sort intervals by 

increasing start time!
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20
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EXAMPLE:

ORDER 

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Used 3 colours

Turns out to be optimal…

40



𝒇𝒊𝒏𝒊𝒔𝒉[𝒄]  = finish time of last 

interval to receive colour 𝒄

Consider interval 𝐴𝑖 = 𝑠𝑖 , 𝑓𝑖 .
If 𝑠𝑖 ≥ 𝑓𝑖𝑛𝑖𝑠ℎ[𝑐], then we can give 𝐴𝑖 

colour 𝒄 without breaking feasibility

For each interval 𝑨𝒊,

search for an appropriate colour c

Interval 1 gets colour 1

Check if we can reuse 

any colour c in 1..d

𝒅 = # of colours 

used so far

If we didn’t reuse a colour,

use a new colour

we reused a colour

41



EXAMPLE: 

RUNNING 

GREEDY

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Initial state
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

i=1

Code before the 

loop: just assign 

colour 1

d=1 finish[1]=
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠2?

No. We cannot 

reuse colour 1.

i=2

While loop over c.

Check if we can 

reuse a color in 1..d

d=1 finish[1]=

Cannot reuse any 

colour. Create a 

new one!

d=2
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠2?

No. We cannot 

reuse colour 1.

i=2

While loop over c.

Check if we can 

reuse a color in 1..d

d=2 finish[1]=

Cannot reuse any 

colour. Create a 

new one!

finish[2]=
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠3?

No. We cannot 

reuse colour 1.

i=3

While loop over c.

Check if we can 

reuse a color in 1..d

d=2 finish[1]= finish[2]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠3?

No. We cannot 

reuse colour 2.

Cannot reuse any 

colour. Create 

new one.
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠3?

No. We cannot 

reuse colour 1.

i=3

While loop over c.

Check if we can 

reuse a color in 1..d

d=3 finish[1]= finish[2]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠3?

No. We cannot 

reuse colour 2.

Cannot reuse any 

colour. Create 

new one.

finish[3]=
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠4?

Yes. We can

reuse colour 1.

i=4

While loop over c.

Check if we can 

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠4?

Yes. We can

reuse colour 1.

i=4

While loop over c.

Check if we can 

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠5?

No. We cannot

reuse colour 1.

i=5

While loop over c.

Check if we can 

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠5?

No. We cannot

reuse colour 2.

Is 𝑓𝑖𝑛𝑖𝑠ℎ 3 ≤ 𝑠5?

Yes. We can

reuse colour 3.
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EXAMPLE: 

RUNNING 

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠5?

No. We cannot

reuse colour 1.

i=5

While loop over c.

Check if we can 

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠5?

No. We cannot

reuse colour 2.

Is 𝑓𝑖𝑛𝑖𝑠ℎ 3 ≤ 𝑠5?

Yes. We can

reuse colour 3.

51

And so on,

and so forth…
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D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑭𝑫

Let 𝑭𝑫 be the first interval that has colour 𝑫
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D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑭𝑫

We prove 𝑭𝑫 overlaps D-1 other intervals at a single point in time

Let 𝑭𝑫 be the first interval that has colour 𝑫
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1

2

3

4

5

…

…

…

D-1

D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑳𝟒

𝑳𝟓

…

…

…

𝑳𝑫−𝟏

𝑭𝑫

We prove start[𝑭𝑫] is properly contained in every such interval 𝑳𝒄

Let 𝑭𝑫 be the first interval that has colour 𝑫

Let 𝑳𝒄 be the last interval that has colour 𝒄 and starts before 𝑭𝑫

Let’s argue this for 𝑳𝟏

Note 𝐿1 must exist

(otherwise greedy would

just use colour 1 for 𝐹𝐷)

And 𝑓𝑖𝑛𝑖𝑠ℎ[𝐿1] must be after 

start[𝑭𝑫] or colour 1 would 

be eligible for reuse!

Same argument applies to 

𝐿2, … , 𝐿𝐷−1

So, 𝑭𝑫 overlaps 𝑫 − 𝟏 intervals 

at a single time start[𝑭𝑫]!

So, we must use 𝐷 colours!
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TIME COMPLEXITY?𝑂(𝑛 log 𝑛)

𝑂(𝑛) iterations

𝑶(𝒅) iterations…

Total 𝑶(𝒏 𝐥𝐨𝐠 𝒏 +  𝒏𝒅)

Could be 𝑶(𝒏 𝐥𝐨𝐠 𝒏) if only a constant 
number of colours are needed

(or even log 𝑛 colours!)

Could be 𝑶(𝒏𝟐) if 𝑛 colours are needed

Most accurate complexity statement is 

𝚯(𝒏 𝐥𝐨𝐠 𝒏 + 𝒏𝑫) where 𝐷 is # colours used

What inefficiencies exist in this algorithm? 

Could we make it faster with clever data 

structure usage?
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IMPROVING THIS ALGORITHM

• Current greedy algorithm:

• For each interval 𝑨𝒊, compare its start time 𝒔𝒊 with the 

𝒇𝒊𝒏𝒊𝒔𝒉[𝒄] times of all colours introduced so-far

• Why? Looking for some 𝑓𝑖𝑛𝑖𝑠ℎ[𝑐] time that is earlier than 𝒔𝒊

• We are doing linear search… Can we do better?

• Use a priority queue to keep track of the earliest 𝒇𝒊𝒏𝒊𝒔𝒉[𝒄]
at all times in the algorithm

• Then we only need to look at minimum element
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Initial state

Heap

Min element: NULL
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Heap

Min element: NULL

Check heap 

minimum

Empty, so a new 

colour is needed
Iteration i=1
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Empty, so a new 

colour is needed

finish at 

time 3

Iteration i=1

finish at 

time 3
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠2

finish at 

time 3

Iteration i=2

finish at 

time 3

No. New colour!
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠2

finish at 

time 3

Iteration i=2

finish at 

time 3

No. New colour!

finish at 

time 7
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠3

finish at 

time 3

Iteration i=3

finish at 

time 3

No. New colour!

finish at 

time 7
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠3

finish at 

time 3

Iteration i=3

finish at 

time 3

No. New colour!

finish at 

time 7

finish at 

time 5
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠4

finish at 

time 3

Iteration i=4

finish at 

time 3

Yes. Reuse colour, 

deleteMin and 

insert new finish 

time into heap!

finish at 

time 7

finish at 

time 5
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EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠4
Iteration i=4

finish at 

time 7

finish at 

time 5

finish at 

time 5

Yes. Reuse colour, 

deleteMin and 

insert new finish 

time into heap!

66



EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

3 is before 𝑠4
Iteration i=4

finish at 

time 7

finish at 

time 5

Yes. Reuse colour, 

deleteMin and 

insert new finish 

time into heap!

finish at 

time 9
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finish at 

time 5



EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

5 is before 𝑠5
Iteration i=5

finish at 

time 7

finish at 

time 5

Yes. Reuse colour, 

deleteMin and 

insert new finish 

time into heap!
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finish at 

time 9

finish at 

time 5



EXAMPLE: 

HEAP-BASED 

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap 

minimum

Heap

Min element: NULL

Check if finish time 

5 is before 𝑠5
Iteration i=5

finish at 

time 7

Yes. Reuse colour, 

deleteMin and 

insert new finish 

time into heap!

finish at 

time 7
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And so on,

and so forth…
finish at 

time 13

finish at 

time 9



𝑂(1)

𝑂(log 𝐷)

𝑂(𝑙𝑜𝑔 𝐷)

𝑂(log 𝑆) where

𝑆 = size(priority queue)

𝑂(1)

Total Θ 𝑛 log 𝑛 + Θ(𝑛 log 𝐷)

Since 𝑛 ≥ 𝐷, Θ(𝑛 log 𝑛)
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DYNAMIC PROGRAMMING
What?
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We had a very interesting gentleman in Washington 

named Wilson. He was Secretary of Defense, and he actually 

had a pathological fear and hatred of the word "research”… He 

would turn red, and he would get violent if people used the term 

research in his presence. You can imagine how he felt, then, 

about the term mathematical.

Where did the name, dynamic programming, come from? The 

1950s were not good years for mathematical research.

I felt I had to do something to shield Wilson … from the fact that I 

was really doing mathematics… What title, what name, could I 

choose? In the first place I was interested in planning, in decision 

making, in thinking. But planning, is not a good word for various 

reasons. I decided therefore to use the word "programming." I 

wanted to get across the idea that this was “dynamic,” this was 

multistage, this was time-varying. I thought, let's kill two birds with 

one stone.

—Richard Bellman, Eye of the Hurricane: An Autobiography

(1984, excerpts from page 159)
“Bottom-up recursion” 

might also a reasonable 

name, as we’ll see…

I thought dynamic programming was a good name.

It was something not even a Congressman could object to.



COMPUTING FIBONACCI NUMBERS INEFFICIENTLY
A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING
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RUNTIME

• In unit cost model

• (UNREALISTIC!)

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 𝑂(1)

• 𝑇 𝑛 ≥ 2𝑇 𝑛 − 2 + 𝑂 1

• 𝑇 𝑛 ≤ 2𝑇 𝑛 − 1 + 𝑂(1)

• n/2 levels of recursion for the first expression

• n levels for the second expression

• Work doubles at each level

• 𝑇(𝑛) is certainly in 𝛀(𝟐𝒏/𝟐) and 𝑶(𝟐𝒏)

This O(1) would change in the bit 

complexity model
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WHY IS THIS SO SLOW?

• Subproblems have 

LOTS of overlap!

• Every subtree on 

the right appears 

on the left

• … recursively …

• Each subtree is 

computed 

exponentially

often in its depth
This overlap suggests dynamic 

programming may be able to help! 75



(Optimal) Recursive Structure

76
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SOLVING FIB USING DYNAMIC PROGRAMMING

• (Optimal) Recursive Structure

• Solution to 𝑛-th Fibonacci number 𝑓(𝑛) can be expressed
as the addition of smaller Fibonacci numbers

• No notion of optimality for this particular problem

• Define Subproblems

• The set subproblems that will be combined to obtain 𝐹𝑖𝑏(𝑛)
is {𝐹𝑖𝑏 𝑛 − 1 , 𝐹𝑖𝑏 𝑛 − 2 }

• 𝑆 𝐼 = {𝐹𝑖𝑏 0 , 𝐹𝑖𝑏 1 , … , 𝐹𝑖𝑏 𝑛 }

• Recurrence Relation

• Computing (Optimal) Solutions

• Create table f[1..n] and compute its entries “bottom-up”

𝑓 𝑛 = ቐ
𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 ∶ 𝑖 ≥ 2
1 ∶ 𝑖 = 1
0 ∶ 𝑖 = 0
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FILLING THE TABLE “BOTTOM-UP”

• Key idea:

• When computing a table entry

• Must have already computed
the entries it depends on!

• Dependencies

• Extract directly from recurrence

• Entry n depends on n-1 and n-2

• Computing entries in order 1..n
guarantees n-1 and n-2 are already 
computed when we compute n
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DP SOLUTION

• Space saving optimization:

• We never look at f[i-3] or earlier

• Can make do with a few 

variables instead of a table

represents f[i-2]

represents f[i-1]

Contains f[n]

Save f[i] before 

overwriting it (so 

its value can be 

stored in f[i-1] 

later)

This is still considered to be 

dynamic programming…

We’ve just optimized out the table.
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CORRECTNESS

• Step 2 (similar to D&C)

• Suppose subproblems are

solved correctly (optimally)

• Prove these (optimal)

subsolutions are combined

into a(n optimal) solution

• Suppose f[i-1] and f[i-2] are the 

(i-1)th and (i-2)th Fib #s

• Then prove f[i] = the n-th Fib #

• Step 1

• Prove that when computing a table entry,

dependent entries are already computed

• Order 0..n means i-1 and i-2 are already 

computed when we compute i
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MODEL OF COMPUTATION FOR RUNTIME
• Unit cost model is not very realistic for this problem,

because Fibonacci numbers grow quickly

• F[10]=55

• F[100]=354224848179261915075

• F[300]=222232244629420445529739893461909967206666939096499764990979600

• Value of F[n] is exponential in n:  𝑓𝑛 ∈ Θ 𝜙𝑛 where 𝜙 ≅ 1.6

• 𝜙𝑛 needs log 𝜙𝑛 bits to store it

• So F[n] needs Θ 𝑛 bits to store!

82

But let’s use unit cost 

anyway for simplicity



RUNNING TIME (UNIT COST)

• 𝑇 𝑛 ∈ 𝚯 𝒏
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A BRIEF ASIDE

• Is this linear runtime?

• NO! This is “a linear function of n”

• When we say “linear runtime” we mean

“a linear function of the input size”

• What is the input size 𝑺?

• The input is the number 𝑛.

• How many bits does it take to store n? 

𝑂(log 𝑛)

• So 𝑺 = 𝐥𝐨𝐠 𝒏 bits

Express T(n) as a function

of the input size S (in bits)

𝑇 𝑛 ∈ Θ 𝑛

2𝑆 = 2log 𝑛 = 𝑛
So 𝑇 𝑛 ∈ Θ 2𝑆

This algorithm is exponential 

in the input size!
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… but still exponentially 

faster than 2𝑛



UNLIKELY THAT WE GET HERE

85



ROD CUTTING
A “REAL” DYNAMIC PROGRAMMING EXAMPLE

• Input:

• 𝑛: length of rod

• 𝑝1, … , 𝑝𝑛: 𝑝𝑖 = price of a rod of length 𝑖

• Output:

• Max income possible by cutting the rod of length 𝑛
into any number of integer pieces (maybe no cuts)

𝑛 = 4

All ways of cutting 

a rod of length 4

Example output: 10
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DYNAMIC PROGRAMMING APPROACH

• High level idea (can just think recursively to start)

• Given a rod of length n

• Either make no cuts,

or make a cut and recurse on the remaining parts

• Where should we cut?

Income 𝑝𝑛

Income Left + Income(Right)
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DYNAMIC PROGRAMMING APPROACH

• Try all ways of making that cut

• I.e., try a cut at positions 1, 2, … , 𝑛 − 1

• In each case, recurse on two rods [0, 𝑖] and [𝑖, 𝑛]

• Take the max income over all possibilities (each 𝑖 / no cut)

…
𝒊 = 𝟑

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝒏 − 𝟏

Optimal substructure:

Max income from two 

rods w/sizes 𝑖 and 𝑛 − 𝑖

… is max income we can 

get from the rod size 𝑖

+ max income we can 

get from the rod size 𝑛 − 𝑖
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RECURRENCE RELATION
• Define 𝑀(𝑘) = maximum income for rod of length 𝑘

• If we do not cut the rod, max income is 𝒑𝒌

• If we do cut a rod at 𝒊

• max income is 𝑀 𝑖 + 𝑀(𝑘 − 𝑖)

• Want to maximize this over all 𝒊

• 𝒎𝒂𝒙𝒊 𝑴 𝒊 + 𝑴 𝒌 − 𝒊 (for 0 < 𝑖 < 𝑘)

• 𝑴 𝒌 = 𝐦𝐚𝐱 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

𝒊 𝒌

Length 𝒊 Length 𝒌 − 𝒊

89

Critical step! Must define what M(k) 

means, semantically!



COMPUTING SOLUTIONS BOTTOM-UP

• Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

• Compute table of solutions: M[1. . 𝑛]

• Dependencies: entry 𝒌 depends on

• 𝑀[𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏 ]

• 𝑀[𝑘 − 𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏 ]

• All of these dependencies are < 𝑘

• So we can fill in the table entries in order 1. . 𝑛

𝑀
1 𝑛𝒌
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Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

Recall, semantically, 𝑀(𝑘) = maximum income for rod of length 𝑘

Time complexity 

(unit cost)?
𝚯 𝒏𝟐

Aside: Is this a “quadratic time” algorithm?
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Exercise: devise an even simpler DP solution 

(hint: try “recursing” only once)



MISCELLANEOUS TIPS

• Building a table of results bottom-up

is what makes an algorithm DP

• There is a similar concept called memoization

• But, for the purposes of this course,

we want to see bottom-up table filling!

• Base cases are critical

• They often completely

determine the answer

• Try setting f[0]=f[1]=0 in FibDP…
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