
CS 341: ALGORITHMS
Lecture 7: finishing greedy

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

ASSUMED: PROFIT / WEIGHT RATIOS

ARE DISTINCT

2

LAST TIME: EXCHANGE ARGUMENT

FOR INTERVAL SELECTION

WHAT IF PROFIT/WEIGHT RATIOS

ARE NOT DISTINCT?

3

OR, MORE GENERALLY,

WHAT IF THERE ARE MANY OPT SOLUTIONS?

WHAT IF THERE ARE MANY OPTIMAL SOLUTIONS

• Can’t just assume X != Y and obtain a contradiction!

• Key idea: focus on one particular optimal solution

• Let 𝑌 be an optimal solution

that matches 𝑿 on a maximal number of indices

• Observe: if 𝑋 is really optimal, then 𝑌 = 𝑋

• Suppose X != Y for contra

• We will modify 𝑌, preserving its optimality,

but making it match 𝑋 on one more index (a contradiction!)

4

Greedy
solution X

Optimal
solution Y

x1 x2

fraction of

item in

knapsack

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj-1
… y1 y2

yj-1
…

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj

j = first index where the

solutions differ

yj ≠ xj

5

Greedy
solution X

Optimal
solution Y

x1 x2

fraction of

item in

knapsack

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj-1
… y1 y2

yj-1
…

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

yj

Must have

yj < xj

6

xj

Greedy
solution X

Optimal

solution Y

x1 x2

fraction of

item in

knapsack

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj-1
… y1 y2

yj-1
…

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

yj

It
e

m
 k

Must exist k > j such that yk > xk because

weight of 𝑋 and 𝑌 must be the same

yk

Remove some weight 𝜹 of item k and

add the same weight of item j

With the goal of making the solutions

equal on index k or index j

It
e

m
 k

xk

Fraction we should add

to j to make solutions
equal on index j: 𝒙𝒋 − 𝒚𝒋

Fraction we should

remove from k to

make solutions equal
on index k: 𝒚𝒌 − 𝒙𝒌

Let 𝜹 = 𝐦𝐢𝐧{𝒘𝒋 𝒙𝒋 − 𝒚𝒋 , 𝒘𝒌 𝒚𝒌 − 𝒙𝒌 }

Observe 𝛿 > 0

Weight to add:

𝒘𝒋 𝒙𝒋 − 𝒚𝒋

Weight to

remove:

𝒘𝒌 𝒚𝒌 − 𝒙𝒌

7

xj

Greedy
solution X

Optimal
solution Y

x1 x2

fraction of

item in

knapsack

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

xj-1
… y1 y2

yj-1
…

0

1

It
e

m
 1

It
e

m
 2

It
e

m
 n

It
e

m
 j

yj

It
e

m
 k

yk

It
e

m
 k

xk

Suppose 𝜹 = 𝒘𝒌 𝒚𝒌 − 𝒙𝒌

Modified optimal
solution Y’ y1 y2

yj-1
…

0

1

yj’

𝑦𝑗
′ = 𝑦𝑗 +

𝜹

𝒘𝒋 𝑦𝑘
′ = 𝑦𝑘 −

𝜹

𝒘𝒌

yk’

8

xj

If 𝛿 were 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 , we would have 𝑦𝑗
′ = 𝑥𝑗

In this case, since 𝛿 = 𝑤𝑘 𝑦𝑘 − 𝑥𝑘 ,
we end up with 𝑦𝑘

′ = 𝑥𝑘

To show 𝑌′ is feasible, we show 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌′ ≤ 𝑀 and 𝑦𝑘
′ ≥ 0, 𝑦𝑗

′ ≤ 1

Modified optimal
solution Y’

We move 𝛿 weight from item 𝑘 to item 𝑗
This does not change the total weight!
So 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌′ = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑌 = 𝑀

Weight

9

y1 y2
yj-1

…

0

1

yj’

𝑦𝑗
′ = 𝑦𝑗 +

𝜹

𝒘𝒋 𝑦𝑘
′ = 𝑦𝑘 −

𝜹

𝒘𝒌

yk’

FEASIBILITY OF 𝒀′

• Showing 𝑦𝑘
′ ≥ 0

• By definition, 𝑦𝑘
′ = 𝑦𝑘 −

𝛿

𝑤𝑘
≥ 0 iff 𝜹 ≤ 𝒚𝒌𝒘𝒌

• But 𝛿 is the minimum of 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 and 𝑤𝑘(𝑦𝑘 − 𝑥𝑘)

• And 𝑤𝑘(𝑦𝑘 − 𝑥𝑘) ≤ 𝑤𝑘𝑦𝑘 so 𝜹 ≤ 𝒚𝒌𝒘𝒌

• Showing 𝑦𝑗
′ ≤ 1

• 𝑦𝑗
′ = 𝑦𝑗 +

𝛿

𝑤𝑗
≤ 1 iff 𝜹 ≤ 𝒘𝒋 𝟏 − 𝒚𝒋 (rearranging)

• 𝛿 ≤ 𝒘𝒋 𝒙𝒋 − 𝒚𝒋 (definition of 𝛿)

• and 𝑤𝑗 𝑥𝑗 − 𝑦𝑗 ≤ 𝒘𝒋 𝟏 − 𝒚𝒋 (by feasibility of X, i.e., 𝑥𝑗 ≤ 1)

10

PROFIT OF 𝒀′

• 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌′ = 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌 +
𝛿

𝑤𝑗
𝑝𝑗 −

𝛿

𝑤𝑘
𝑝𝑘 = 𝑝𝑟𝑜𝑓𝑖𝑡 𝑌 + 𝛿

𝑝𝑗

𝑤𝑗
−

𝑝𝑘

𝑤𝑘

• Since j is before k, and we consider items with more profit per

unit weight first, we have
𝑝𝑗

𝑤𝑗
≥

𝑝𝑘

𝑤𝑘
.

• Since 𝛿 > 0 and
𝑝𝑗

𝑤𝑗
≥

𝑝𝑘

𝑤𝑘
, we have 𝛿

𝑝𝑗

𝑤𝑗
−

𝑝𝑘

𝑤𝑘
≥ 0

• Since 𝑌 is optimal, this cannot be positive

• So 𝑌′ is a new optimal solution

that matches 𝑿 on one more index than 𝒀

• Contradiction: 𝑌 matched 𝑋 on a maximal number of indices!

(Fraction of item j added) × (profit for entire item)

11

SUMMARIZING EXCHANGE ARGUMENTS

• If there is a unique optimal solution

• Let O != G be an optimal solution that beats greedy

• Show how to change O to obtain a better solution

• If there is more than one optimal solution

• Let O != G be an optimal solution that matches greedy

on as many choices as possible

• Show how to change O to obtain an optimal solution

O’ that matches greedy for even more choice(s)

12

FINISHING UP GREEDY

13

INTERVAL COLOURING

14

PROBLEM: INTERVAL COLOURING

Example

7 intervals,

7 colours.

Feasible, but

not optimal

15

MORE EXAMPLES

Example Not feasible!

Example

7 intervals,

6 colours.

Feasible, but

not optimal

Example

7 intervals,

2 colours.

Optimal

Same color,

but not disjoint…

Same color,

but disjoint. OK!

Same color,

but disjoint. OK!

16

17

EXAMPLE:

ORDER

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Consider intervals in

the order they are

given in the input:
𝑨𝟏 … 𝑨𝟏𝟎

18

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

19

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

20

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

21

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

22

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

23

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

24

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

25

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

26

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9 4

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

27

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 1

A3 1

A4 2

A5 2

A6 3

A7 2

A8 4

A9 4

A10 3

x-axis

0 2 4 6 8 10 12 14 16 18 20

Used 4 colours

Can we do better?

28

EXAMPLE:

ORDER

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Pre-sort intervals by

increasing start time!

29

EXAMPLE:

ORDER

MATTERS!

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Pre-sort intervals by

increasing start time!

30

EXAMPLE:

ORDER

MATTERS!

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

31

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

32

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

33

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

34

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

35

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

36

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

37

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

38

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

39

EXAMPLE:

ORDER

MATTERS!

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Used 3 colours

Turns out to be optimal…

40

𝒇𝒊𝒏𝒊𝒔𝒉[𝒄] = finish time of last

interval to receive colour 𝒄

Consider interval 𝐴𝑖 = 𝑠𝑖 , 𝑓𝑖 .
If 𝑠𝑖 ≥ 𝑓𝑖𝑛𝑖𝑠ℎ[𝑐], then we can give 𝐴𝑖

colour 𝒄 without breaking feasibility

For each interval 𝑨𝒊,

search for an appropriate colour c

Interval 1 gets colour 1

Check if we can reuse

any colour c in 1..d

𝒅 = # of colours

used so far

If we didn’t reuse a colour,

use a new colour

we reused a colour

41

EXAMPLE:

RUNNING

GREEDY

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Initial state

42

EXAMPLE:

RUNNING

GREEDY

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

i=1

Code before the

loop: just assign

colour 1

d=1 finish[1]=

43

EXAMPLE:

RUNNING

GREEDY

A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠2?

No. We cannot

reuse colour 1.

i=2

While loop over c.

Check if we can

reuse a color in 1..d

d=1 finish[1]=

Cannot reuse any

colour. Create a

new one!

d=2

44

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠2?

No. We cannot

reuse colour 1.

i=2

While loop over c.

Check if we can

reuse a color in 1..d

d=2 finish[1]=

Cannot reuse any

colour. Create a

new one!

finish[2]=

45

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠3?

No. We cannot

reuse colour 1.

i=3

While loop over c.

Check if we can

reuse a color in 1..d

d=2 finish[1]= finish[2]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠3?

No. We cannot

reuse colour 2.

Cannot reuse any

colour. Create

new one.

46

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠3?

No. We cannot

reuse colour 1.

i=3

While loop over c.

Check if we can

reuse a color in 1..d

d=3 finish[1]= finish[2]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠3?

No. We cannot

reuse colour 2.

Cannot reuse any

colour. Create

new one.

finish[3]=

47

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠4?

Yes. We can

reuse colour 1.

i=4

While loop over c.

Check if we can

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

48

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠4?

Yes. We can

reuse colour 1.

i=4

While loop over c.

Check if we can

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

49

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠5?

No. We cannot

reuse colour 1.

i=5

While loop over c.

Check if we can

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠5?

No. We cannot

reuse colour 2.

Is 𝑓𝑖𝑛𝑖𝑠ℎ 3 ≤ 𝑠5?

Yes. We can

reuse colour 3.

50

EXAMPLE:

RUNNING

GREEDY

A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Is 𝑓𝑖𝑛𝑖𝑠ℎ 1 ≤ 𝑠5?

No. We cannot

reuse colour 1.

i=5

While loop over c.

Check if we can

reuse a color in 1..d

d=3 finish[1]= finish[2]= finish[3]=

Is 𝑓𝑖𝑛𝑖𝑠ℎ 2 ≤ 𝑠5?

No. We cannot

reuse colour 2.

Is 𝑓𝑖𝑛𝑖𝑠ℎ 3 ≤ 𝑠5?

Yes. We can

reuse colour 3.

51

And so on,

and so forth…

52

D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑭𝑫

Let 𝑭𝑫 be the first interval that has colour 𝑫

53

D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑭𝑫

We prove 𝑭𝑫 overlaps D-1 other intervals at a single point in time

Let 𝑭𝑫 be the first interval that has colour 𝑫

54

1

2

3

4

5

…

…

…

D-1

D

x-axis

0 2 4 6 8 10 12 14 16 18 20

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑳𝟒

𝑳𝟓

…

…

…

𝑳𝑫−𝟏

𝑭𝑫

We prove start[𝑭𝑫] is properly contained in every such interval 𝑳𝒄

Let 𝑭𝑫 be the first interval that has colour 𝑫

Let 𝑳𝒄 be the last interval that has colour 𝒄 and starts before 𝑭𝑫

Let’s argue this for 𝑳𝟏

Note 𝐿1 must exist

(otherwise greedy would

just use colour 1 for 𝐹𝐷)

And 𝑓𝑖𝑛𝑖𝑠ℎ[𝐿1] must be after

start[𝑭𝑫] or colour 1 would

be eligible for reuse!

Same argument applies to

𝐿2, … , 𝐿𝐷−1

So, 𝑭𝑫 overlaps 𝑫 − 𝟏 intervals

at a single time start[𝑭𝑫]!

So, we must use 𝐷 colours!

55

TIME COMPLEXITY?𝑂(𝑛 log 𝑛)

𝑂(𝑛) iterations

𝑶(𝒅) iterations…

Total 𝑶(𝒏 𝐥𝐨𝐠 𝒏 + 𝒏𝒅)

Could be 𝑶(𝒏 𝐥𝐨𝐠 𝒏) if only a constant
number of colours are needed

(or even log 𝑛 colours!)

Could be 𝑶(𝒏𝟐) if 𝑛 colours are needed

Most accurate complexity statement is

𝚯(𝒏 𝐥𝐨𝐠 𝒏 + 𝒏𝑫) where 𝐷 is # colours used

What inefficiencies exist in this algorithm?

Could we make it faster with clever data

structure usage?

56

IMPROVING THIS ALGORITHM

• Current greedy algorithm:

• For each interval 𝑨𝒊, compare its start time 𝒔𝒊 with the

𝒇𝒊𝒏𝒊𝒔𝒉[𝒄] times of all colours introduced so-far

• Why? Looking for some 𝑓𝑖𝑛𝑖𝑠ℎ[𝑐] time that is earlier than 𝒔𝒊

• We are doing linear search… Can we do better?

• Use a priority queue to keep track of the earliest 𝒇𝒊𝒏𝒊𝒔𝒉[𝒄]
at all times in the algorithm

• Then we only need to look at minimum element

57

EXAMPLE:

HEAP-BASED

ALGORITHM
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Initial state

Heap

Min element: NULL

58

EXAMPLE:

HEAP-BASED

ALGORITHM
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Heap

Min element: NULL

Check heap

minimum

Empty, so a new

colour is needed
Iteration i=1

59

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Empty, so a new

colour is needed

finish at

time 3

Iteration i=1

finish at

time 3

60

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠2

finish at

time 3

Iteration i=2

finish at

time 3

No. New colour!

61

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠2

finish at

time 3

Iteration i=2

finish at

time 3

No. New colour!

finish at

time 7

62

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠3

finish at

time 3

Iteration i=3

finish at

time 3

No. New colour!

finish at

time 7

63

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠3

finish at

time 3

Iteration i=3

finish at

time 3

No. New colour!

finish at

time 7

finish at

time 5

64

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠4

finish at

time 3

Iteration i=4

finish at

time 3

Yes. Reuse colour,

deleteMin and

insert new finish

time into heap!

finish at

time 7

finish at

time 5

65

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠4
Iteration i=4

finish at

time 7

finish at

time 5

finish at

time 5

Yes. Reuse colour,

deleteMin and

insert new finish

time into heap!

66

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

3 is before 𝑠4
Iteration i=4

finish at

time 7

finish at

time 5

Yes. Reuse colour,

deleteMin and

insert new finish

time into heap!

finish at

time 9

67

finish at

time 5

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

5 is before 𝑠5
Iteration i=5

finish at

time 7

finish at

time 5

Yes. Reuse colour,

deleteMin and

insert new finish

time into heap!

68

finish at

time 9

finish at

time 5

EXAMPLE:

HEAP-BASED

ALGORITHM
A1 1

A2 2

A3 3

A4

A5

A6

A7

A8

A9

A10

x-axis

0 2 4 6 8 10 12 14 16 18 20

Check heap

minimum

Heap

Min element: NULL

Check if finish time

5 is before 𝑠5
Iteration i=5

finish at

time 7

Yes. Reuse colour,

deleteMin and

insert new finish

time into heap!

finish at

time 7

69

And so on,

and so forth…
finish at

time 13

finish at

time 9

𝑂(1)

𝑂(log 𝐷)

𝑂(𝑙𝑜𝑔 𝐷)

𝑂(log 𝑆) where

𝑆 = size(priority queue)

𝑂(1)

Total Θ 𝑛 log 𝑛 + Θ(𝑛 log 𝐷)

Since 𝑛 ≥ 𝐷, Θ(𝑛 log 𝑛)

70

DYNAMIC PROGRAMMING
What?

71

72

We had a very interesting gentleman in Washington

named Wilson. He was Secretary of Defense, and he actually

had a pathological fear and hatred of the word "research”… He

would turn red, and he would get violent if people used the term

research in his presence. You can imagine how he felt, then,

about the term mathematical.

Where did the name, dynamic programming, come from? The

1950s were not good years for mathematical research.

I felt I had to do something to shield Wilson … from the fact that I

was really doing mathematics… What title, what name, could I

choose? In the first place I was interested in planning, in decision

making, in thinking. But planning, is not a good word for various

reasons. I decided therefore to use the word "programming." I

wanted to get across the idea that this was “dynamic,” this was

multistage, this was time-varying. I thought, let's kill two birds with

one stone.

—Richard Bellman, Eye of the Hurricane: An Autobiography

(1984, excerpts from page 159)
“Bottom-up recursion”

might also a reasonable

name, as we’ll see…

I thought dynamic programming was a good name.

It was something not even a Congressman could object to.

COMPUTING FIBONACCI NUMBERS INEFFICIENTLY
A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING

73

RUNTIME

• In unit cost model

• (UNREALISTIC!)

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 𝑂(1)

• 𝑇 𝑛 ≥ 2𝑇 𝑛 − 2 + 𝑂 1

• 𝑇 𝑛 ≤ 2𝑇 𝑛 − 1 + 𝑂(1)

• n/2 levels of recursion for the first expression

• n levels for the second expression

• Work doubles at each level

• 𝑇(𝑛) is certainly in 𝛀(𝟐𝒏/𝟐) and 𝑶(𝟐𝒏)

This O(1) would change in the bit

complexity model

74

WHY IS THIS SO SLOW?

• Subproblems have

LOTS of overlap!

• Every subtree on

the right appears

on the left

• … recursively …

• Each subtree is

computed

exponentially

often in its depth
This overlap suggests dynamic

programming may be able to help! 75

(Optimal) Recursive Structure

76

77

SOLVING FIB USING DYNAMIC PROGRAMMING

• (Optimal) Recursive Structure

• Solution to 𝑛-th Fibonacci number 𝑓(𝑛) can be expressed
as the addition of smaller Fibonacci numbers

• No notion of optimality for this particular problem

• Define Subproblems

• The set subproblems that will be combined to obtain 𝐹𝑖𝑏(𝑛)
is {𝐹𝑖𝑏 𝑛 − 1 , 𝐹𝑖𝑏 𝑛 − 2 }

• 𝑆 𝐼 = {𝐹𝑖𝑏 0 , 𝐹𝑖𝑏 1 , … , 𝐹𝑖𝑏 𝑛 }

• Recurrence Relation

• Computing (Optimal) Solutions

• Create table f[1..n] and compute its entries “bottom-up”

𝑓 𝑛 = ቐ
𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 ∶ 𝑖 ≥ 2
1 ∶ 𝑖 = 1
0 ∶ 𝑖 = 0

78

FILLING THE TABLE “BOTTOM-UP”

• Key idea:

• When computing a table entry

• Must have already computed
the entries it depends on!

• Dependencies

• Extract directly from recurrence

• Entry n depends on n-1 and n-2

• Computing entries in order 1..n
guarantees n-1 and n-2 are already
computed when we compute n

79

DP SOLUTION

• Space saving optimization:

• We never look at f[i-3] or earlier

• Can make do with a few

variables instead of a table

represents f[i-2]

represents f[i-1]

Contains f[n]

Save f[i] before

overwriting it (so

its value can be

stored in f[i-1]

later)

This is still considered to be

dynamic programming…

We’ve just optimized out the table.

80

CORRECTNESS

• Step 2 (similar to D&C)

• Suppose subproblems are

solved correctly (optimally)

• Prove these (optimal)

subsolutions are combined

into a(n optimal) solution

• Suppose f[i-1] and f[i-2] are the

(i-1)th and (i-2)th Fib #s

• Then prove f[i] = the n-th Fib #

• Step 1

• Prove that when computing a table entry,

dependent entries are already computed

• Order 0..n means i-1 and i-2 are already

computed when we compute i

81

MODEL OF COMPUTATION FOR RUNTIME
• Unit cost model is not very realistic for this problem,

because Fibonacci numbers grow quickly

• F[10]=55

• F[100]=354224848179261915075

• F[300]=222232244629420445529739893461909967206666939096499764990979600

• Value of F[n] is exponential in n: 𝑓𝑛 ∈ Θ 𝜙𝑛 where 𝜙 ≅ 1.6

• 𝜙𝑛 needs log 𝜙𝑛 bits to store it

• So F[n] needs Θ 𝑛 bits to store!

82

But let’s use unit cost

anyway for simplicity

RUNNING TIME (UNIT COST)

• 𝑇 𝑛 ∈ 𝚯 𝒏

83

A BRIEF ASIDE

• Is this linear runtime?

• NO! This is “a linear function of n”

• When we say “linear runtime” we mean

“a linear function of the input size”

• What is the input size 𝑺?

• The input is the number 𝑛.

• How many bits does it take to store n?

𝑂(log 𝑛)

• So 𝑺 = 𝐥𝐨𝐠 𝒏 bits

Express T(n) as a function

of the input size S (in bits)

𝑇 𝑛 ∈ Θ 𝑛

2𝑆 = 2log 𝑛 = 𝑛
So 𝑇 𝑛 ∈ Θ 2𝑆

This algorithm is exponential

in the input size!

84

… but still exponentially

faster than 2𝑛

UNLIKELY THAT WE GET HERE

85

ROD CUTTING
A “REAL” DYNAMIC PROGRAMMING EXAMPLE

• Input:

• 𝑛: length of rod

• 𝑝1, … , 𝑝𝑛: 𝑝𝑖 = price of a rod of length 𝑖

• Output:

• Max income possible by cutting the rod of length 𝑛
into any number of integer pieces (maybe no cuts)

𝑛 = 4

All ways of cutting

a rod of length 4

Example output: 10

86

DYNAMIC PROGRAMMING APPROACH

• High level idea (can just think recursively to start)

• Given a rod of length n

• Either make no cuts,

or make a cut and recurse on the remaining parts

• Where should we cut?

Income 𝑝𝑛

Income Left + Income(Right)

87

DYNAMIC PROGRAMMING APPROACH

• Try all ways of making that cut

• I.e., try a cut at positions 1, 2, … , 𝑛 − 1

• In each case, recurse on two rods [0, 𝑖] and [𝑖, 𝑛]

• Take the max income over all possibilities (each 𝑖 / no cut)

…
𝒊 = 𝟑

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝒏 − 𝟏

Optimal substructure:

Max income from two

rods w/sizes 𝑖 and 𝑛 − 𝑖

… is max income we can

get from the rod size 𝑖

+ max income we can

get from the rod size 𝑛 − 𝑖

88

RECURRENCE RELATION
• Define 𝑀(𝑘) = maximum income for rod of length 𝑘

• If we do not cut the rod, max income is 𝒑𝒌

• If we do cut a rod at 𝒊

• max income is 𝑀 𝑖 + 𝑀(𝑘 − 𝑖)

• Want to maximize this over all 𝒊

• 𝒎𝒂𝒙𝒊 𝑴 𝒊 + 𝑴 𝒌 − 𝒊 (for 0 < 𝑖 < 𝑘)

• 𝑴 𝒌 = 𝐦𝐚𝐱 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

𝒊 𝒌

Length 𝒊 Length 𝒌 − 𝒊

89

Critical step! Must define what M(k)

means, semantically!

COMPUTING SOLUTIONS BOTTOM-UP

• Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

• Compute table of solutions: M[1. . 𝑛]

• Dependencies: entry 𝒌 depends on

• 𝑀[𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏]

• 𝑀[𝑘 − 𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏]

• All of these dependencies are < 𝑘

• So we can fill in the table entries in order 1. . 𝑛

𝑀
1 𝑛𝒌

90

Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

Recall, semantically, 𝑀(𝑘) = maximum income for rod of length 𝑘

Time complexity

(unit cost)?
𝚯 𝒏𝟐

Aside: Is this a “quadratic time” algorithm?

91

Exercise: devise an even simpler DP solution

(hint: try “recursing” only once)

MISCELLANEOUS TIPS

• Building a table of results bottom-up

is what makes an algorithm DP

• There is a similar concept called memoization

• But, for the purposes of this course,

we want to see bottom-up table filling!

• Base cases are critical

• They often completely

determine the answer

• Try setting f[0]=f[1]=0 in FibDP…

92

