CS 341: ALGORITHMS

Lecture 8: dynamic programming II

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
ROD CUTTING
A “REAL” DYNAMIC PROGRAMMING EXAMPLE

• Input:
 • n: length of rod
 • p_1, \ldots, p_n: $p_i =$ price of a rod of length i

• Output:
 • Max income possible by cutting the rod of length n into any number of integer pieces (maybe no cuts)

<table>
<thead>
<tr>
<th>length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>price p_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

$n = 4$

All ways of cutting a rod of length 4

Example output: 10
DYNAMIC PROGRAMMING APPROACH

• High level idea (**can just think recursively to start**)
 • Given a rod of length n
 • Either make no cuts, or make a cut and **recurse** on the remaining parts

 ![Diagram](image)

 - Income \(p_n \)
 - Income(Left) + Income(Right)

• **Where** should we cut?
DYNAMIC PROGRAMMING APPROACH

• Try **all ways** of making that cut
 • I.e., try a cut at positions 1, 2, ..., \(n - 1 \)
 • In each case, recurse on two rods \([0, i]\) and \([i, n]\)
• Take the max income over **all possibilities** (each \(i \) / no cut)

\[
\begin{align*}
 i &= 1 \\
 i &= 2 \\
 i &= 3 \\
 \cdots \\
 i &= n - 1 \\
\end{align*}
\]

Optimal substructure:
Max income from two rods w/sizes \(i \) and \(n - i \)
... is max income we can get from the rod size \(i \)
+ max income we can get from the rod size \(n - i \)
RECURRENCE RELATION

- Define $M(k) =$ maximum income for rod of length k
- If we do **not** cut the rod, max income is p_k
- If we **do** cut a rod at i
 - max income is $M(i) + M(k - i)$
 - Want to maximize this **over all** i
 - $\max_i\{M(i) + M(k - i)\}$ (for $0 < i < k$)
 - $M(k) = \max\{p_k, \max_{1 \leq i \leq k-1}\{M(i) + M(k - i)\}\}$

Critical step! Must define what $M(k)$ means, semantically!
COMPUTING SOLUTIONS BOTTOM-UP

• **Recurrence:** \(M(k) = \max\{p_k, \max_{1 \leq i \leq k-1} \{M(i) + M(k - i)\}\} \)

• Compute **table** of solutions: \(M[1..n] \)

\[
M = \begin{pmatrix}
\vdots \\
1 & \cdots & k & \cdots & n \\
\vdots
\end{pmatrix}
\]

• Dependencies: **entry** \(k \) depends on

 • \(M[i] \rightarrow M[1..(k - 1)] \)

 • \(M[k - i] \rightarrow M[1..(k - 1)] \)

• All of these dependencies are \(< k\)

• So we can fill in the table entries in order \(1..n \)
Recurrence: \(M(k) = \max\{p_k, \max_{1 \leq i \leq k-1}\{M(i) + M(k-i)\}\} \)

Recall, semantically, \(M(k) \) = maximum income for rod of length \(k \)

```
RodCutting(n, p[1..n])
    M = new array[1..n]

    // compute each entry M[k]
    for k = 1..n
        M[k] = p[k] // current best = no cuts

    // try each cut in 1..(k-1)
    for i = 1..(k-1)
        M[k] = max(M[k], M[i] + M[k-i])

    return M[n]
```

Time complexity (unit cost)? \(\Theta(n^2) \)
MISCELLANEOUS TIPS

• Building a table of results bottom-up is what makes an algorithm DP

• There is a similar concept called memoization
 • But, for the purposes of this course, we want to see bottom-up table filling!

• Base cases are critical
 • They often completely determine the answer
 • Try setting f[0]=f[1]=0 in FibDP…
DP SOLUTION TO 0-1 KNAPSACK
Suppose the optimal solution \(O \) does not include this. Then with the \(O \) must achieve the best possible value using only items 1-3.

Problem: output maximum value one can get from taking \(\leq 7\text{kg} \), out of these four items.

Subproblem: output max value for \(\leq 7\text{kg} \) out of these three items

This is a smaller subproblem: reduced # of items

Goal: create recurrence relation to describe optimal solution in terms of subproblems

Let \(P[i, m] \) = maximum profit using any subset of the items 1..i, with weight limit \(m \)

Note: \(P[n, M] \) (= \(P[4, 7] \)) is the optimal profit

If \(O \) does not include the camera, then \(P[4, 7] \) = best we can do with the first three items and weight limit 7kg

That is, \(P[4, 7] = P[3, 7] \)

What if the camera IS included in \(O \)?
Suppose the optimal solution \(O \) includes this subproblem:

Subproblem: output max value for \(\leq 6 \text{kg} \) out of these three items

This is a smaller subproblem: reduced weight and # of items

Recall: \(P[i, m] = \) maximum profit using any subset of the items 1..\(i \), with weight limit \(m \)

If \(O \) includes the camera, then

\[
P[4, 7] = p_4 + \text{best we can do with the first three items and weight limit } 7 \text{kg} - w_4 = 6 \text{kg}
\]

That is, \(P[4, 7] = p_4 + P[3, 6] \)

Problem: output maximum value one can get from taking \(\leq 7 \text{kg} \), out of these four items.

Then with the remaining 7kg – \(w_4 = 6 \text{kg} \), and items 1-3, \(O \) must achieve the best possible value.

How to evaluate both possibilities: in & not in \(O \)?
If O includes the camera, then
\[P[4, 7] = p_4 + \text{best we can do with the first three items and weight limit 7kg} \]

If O does not include the camera, then
\[P[4, 7] = \text{best we can do with the first three items and weight limit 7kg} - w_4 = 6kg \]

Recall:
\[P[i, m] = \text{maximum profit using any subset of the items } 1 \ldots i, \text{ with weight limit } m \]

Try both and take the better result! (How?)

In general:
\[P[4, 7] = P[3, 7] \]
\[P[i, m] = P[i - 1, m] \]
\[P[4, 7] = p_4 + P[3, 7 - w_4] \]
\[P[i, m] = p_i + P[i - 1, m - w_i] \]

In general:
\[P[i, m] = \max\{ P[i - 1, m], P[i - 1, m - w_i] \} \]

Note that \(\max\{P[i - 1, m], p_i + P[i - 1, m - w_i]\} \) is only valid if \(i \geq 2 \) and \(m \geq w_i \)

What to do when \(i = 1 \) or \(m < w_i \)? These are special cases.
Special case 3: $i = 1$ and $m < w_i$

Since $i \leq 1$, we can only use item 1. Since $m < w_i$, we cannot carry item 1. So, $P[i, m] = 0$.

Special case 2: $i = 1$ and $m \geq w_i$

Since $i \leq 1$, we can only use item 1. Since $m \geq w_i$, we can carry item 1. So, $P[i, m] = p_i$.

Special case 1: $i \geq 2$ and $m < w_i$

Since $m < w_i$, we cannot carry item i. So, $P[i, m] = P[i - 1, m]$.

General case: $i \geq 2$ and $m \geq w_i$

Since $m \geq w_i$, we can carry item i. $P[i, m] = \max\{P[i - 1, m], p_i + P[i - 1, m - w_i]\}$

Recurrence Relation:

$$P[i, m] = \begin{cases} \max\{P[i - 1, m], p_i + P[i - 1, m - w_i]\} & \text{if } i \geq 2, \ m \geq w_i \\ P[i - 1, m] & \text{if } i \geq 2, \ m < w_i \\ p_i & \text{if } i = 1, \ m \geq w_1 \\ 0 & \text{if } i = 1, \ m < w_1. \end{cases}$$
FILLING THE ARRAY:

\[P[i, m] = \begin{cases}
\max\{P[i - 1, m], p_i + P[i - 1, m - w_i]\} & \text{if } i \geq 2, m \geq w_i \\
P[i - 1, m] & \text{if } i \geq 2, m < w_i \\
p_1 & \text{if } i = 1, m \geq w_1 \\
0 & \text{if } i = 1, m < w_1.
\]

Suppose item 1 does not fit until this \(m \) value (\(m = w_1 \)).

\(i \)-axis (can use items in 1..i)

\(m \)-axis (remaining weight limit)

No data dependencies on any other array cells.
FILLING THE ARRAY:

\[
P[i, m] = \begin{cases}
\max\{P[i-1, m], p_i + P[i-1, m-w_i]\} & \text{if } i \geq 2, \ m \geq w_i \\
P[i-1, m] & \text{if } i \geq 2, \ m < w_i \\
p_1 & \text{if } i = 1, \ m \geq w_1 \\
0 & \text{if } i = 1, \ m < w_1.
\end{cases}
\]

Suppose \(m < w_2 \) from here

\(i \)-axis (can use items in 1..\(i \))

\(m \)-axis (remaining weight limit)

Data dependency: need cell above to be computed already

... to here
FILLING THE ARRAY:

\[P[i, m] = \begin{cases}
\max\{P[i-1, m], p_i + P[i-1, m-w_i]\} & \text{if } i \geq 2, \ m \geq w_i \\
\max\{P[i-1, m], p_i\} & \text{if } i \geq 2, \ m < w_i \\
p_1 & \text{if } i = 1, \ m \geq w_1 \\
0 & \text{if } i = 1, \ m < w_1.
\end{cases} \]

\(\text{Where is slot } [i-1, m-w_i] \text{?} \)

\(\text{Consider this entry where } m \geq w_2 \)

\(\text{Data dependency: need this to be computed already} \)

\(\text{So, what value should be stored in this entry?} \)

\(\max\{p_1, p_2 + 0\} \)

\(m \)-axis (remaining weight limit)

\(i \)-axis (can use items in 1..i)
FILLING THE ARRAY:

\[
P[i,m] = \begin{cases}
\max\{P[i-1,m], p_i + P[i-1, m-w_i]\} & \text{if } i \geq 2, m \geq w_i \\
\max\{p_1, p_2 + 0\} & \text{if } i = 1, m \geq w_1 \\
0 & \text{if } i = 1, m < w_1.
\end{cases}
\]

- **i-axis (can use items in 1..i)**
- **m-axis (remaining weight limit)**

We only ever look at the previous row!

To satisfy data dependencies, we can fill entries in the order: for \((i = 1..n)\), for \((m = 0..M)\)

Depending how many zeros we have in the top row, and how far back we're looking, might start to get cells containing \(\max\{p_1, p_2 + p_1\}\)

Would the following fill-order work? for \((i = 1..n)\), for \((m = M..0)\)
EXERCISE

\[
\begin{align*}
\text{max}\{P[i-1,m], p_i + P[i-1,m-w_i]\} & \quad \text{if } i \geq 2, m \geq w_i \\
P[i-1,m] & \quad \text{if } i \geq 2, m < w_i
\end{align*}
\]

Suppose we have profits 1, 2, 3, 5, 7, 10, weights 2, 3, 5, 8, 13, 16, and capacity 30.

The following table is computed:

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 0 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 0 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ? | | | | | | | | | | | |

\[P[3, 16] = ?\]

What do you think?
Suppose we have profits 1, 2, 3, 5, 7, 10, weights 2, 3, 5, 8, 13, 16, and capacity 30.

The following table is computed:

\[
P[i, m] = \begin{cases}
P[i-1, m], & \text{if } i \geq 2, m \geq w_i \\
\max\{P[i-1, m-w_i], p_i + P[i-1, m-w_i]\}, & \text{if } i \geq 2, m < w_i
\end{cases}
\]

\[
P[3, 16] = \max\{P[2, 16], P[2, 11] + 3\} = \max\{3, 3 + 3\} = 6.
\]
Recall: To satisfy data dependencies, we can fill entries in the order:

for \(i = 1 \ldots n \), for \(m = 0 \ldots M \)

\[
P[i, m] = \begin{cases}
\max\{P[i - 1, m], p_i + P[i - 1, m - w_i]\} & \text{if } i \geq 2, \ m \geq w_i \\
P[i - 1, m] & \text{if } i \geq 2, \ m < w_i \\
p_1 & \text{if } i = 1, \ m \geq w_1 \\
0 & \text{if } i = 1, \ m < w_1.
\end{cases}
\]

```java
Knapsack01(p[1..n], w[1..n], M)

P = new table[1..n][0..M]

// base cases where i=1
for m = 0..M
  if m < w[1] then
    P[1][m] = 0
  else
    P[1][m] = p[1]

// general cases where i>=2
for i = 2..n
  for m = 0..M
    if m < w[i] then
      P[i][m] = P[i-1][m]
    else
      P[i][m] = max(P[i-1][m], p[i] + P[i-1][m-w[i]])

return P[n][M]
```

Read & return optimal **profit**

How about the optimal **items**?
The optimal solution is computed by tracing back through the table. For the previous example, consisting of profits 1, 2, 3, 5, 7, 10, weights 2, 3, 5, 8, 13, 16, and capacity 30, the optimal solution is...

<table>
<thead>
<tr>
<th>Items you can take</th>
<th>weight limit remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 2 2 3 3 3 3 3</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 2 2 3 3 4 5 5</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 2 2 3 3 4 5 5</td>
</tr>
<tr>
<td>5</td>
<td>0 0 1 2 2 3 3 4 5 5</td>
</tr>
<tr>
<td>6</td>
<td>- - - - - - - - - -</td>
</tr>
</tbody>
</table>

- 8 > 6 so O must take item 4.
- Same profit using items 1..4 or 1..5. So, there exists an optimal solution O that does not use item 5! Consider O.
- Best profit for remaining items + weight using items 1..4 or 1..5.
- 18 > 17, so any optimal solution must take item 6.
- Remaining weight = 14.

Exercise: continue, and determine which other items are in O.
The optimal solution is computed by tracing back through the table. For the previous example, consisting of profits 1, 2, 3, 5, 7, 10, weights 2, 3, 5, 8, 13, 16, and capacity 30, the optimal solution is \([1, 1, 0, 1, 0, 1]\).

<table>
<thead>
<tr>
<th>Items you can take</th>
<th>weight limit remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 2 2 3</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 2 2 3 3 4 5 5 6</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 2 2 3 3 4 5 5 6 7 7 7 8 8 9 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11</td>
</tr>
<tr>
<td>5</td>
<td>0 0 1 2 2 3 3 4 5 5 6 7 7 7 8 8 9 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11</td>
</tr>
<tr>
<td>6</td>
<td>0 0</td>
</tr>
</tbody>
</table>

22
Runtime given P?

$\Theta(n)$

Is this linear time?

More on this soon…
Complexity of the Algorithm

Suppose we assume the unit cost model, so additions / subtractions take time $O(1)$.

The complexity to construct the table is $\Theta(nM)$.

Is this a polynomial-time algorithm, as a function of the size of the problem instance?

We have

$$\text{size}(I) = \log_2 M + \sum_{i=1}^{n} \log_2 w_i + \sum_{i=1}^{n} \log_2 p_i.$$

Note in particular that M is exponentially large compared to $\log_2 M$. So constructing the table is not a polynomial-time algorithm, even in the unit cost model.

What would the complexity of a recursive algorithm be?

A recursive algorithm would take $\sim \Theta(2^n)$ time.

So the DP alg is faster when there are many item types, but small weight limit.

Huge n is fine, but M should be in $\text{poly}(n)$ to get an asymptotic improvement.

$\text{DP takes } \Theta(nM) \text{ time, which could be } \Theta(n2^n) \text{ for huge } M$.

n must be very small.
SIMPLIFYING BASE CASES

\[
P[i, m] = \begin{cases}
\max\{P[i-1, m], p_i + P[i-1, m - w_i]\} & \text{if } i \geq 2, m \geq w_i \\
\max\{P[i-1, m], p_i + P[i-1, m - w_i]\} & \text{if } i \geq 2, m < w_i \\
p_i & \text{if } i = 1, m \geq w_i \\
0 & \text{if } i = 1, m < w_i.
\end{cases}
\]

i-axis (can use items in 1..*i*)

m-axis (remaining weight limit)

For *i* = 1, *m* < *w*\(_i\), we have \(P[i - 1, m]\) which is 0

For *i* = 1, *m* ≥ *w*\(_i\), we have \(p_i + P[i - 1, m - w_i]\) which is \(p_i + 0\)
We get much simpler code!

```
Knapsack01(p[1..n], w[1..n], M)
  P = new table[0..n][0..M] containing zeros

  for i = 1..n
    for m = 0..M
      if m < w[i] then
        P[i][m] = P[i-1][m]
      else
        P[i][m] = max(P[i-1][m],
                       p[i] + P[i-1][m-w[i]])

  return P[n][M]
```

Compare:

```
Knapsack01(p[1..n], w[1..n], M)
  P = new table[1..n][0..M]

  // base cases where i=1
  for m = 0..M
    if m < w[i] then
      P[i][m] = 0
    else
      P[i][m] = p[i]

  // general cases where i>=2
  for i = 2..n
    for m = 0..M
      if m < w[i] then
        P[i][m] = P[i-1][m]
      else
        P[i][m] = max(P[i-1][m],
                       p[i] + P[i-1][m-w[i]])

  return P[n][M]
```
We never look at $P[i-2][...]$. Just keep two arrays representing $P[i]$ and $P[i-1]$

Space complexity changes from $O(mn)$ to $O(m)$
COIN CHANGING
Coin Changing

Problem 5.2

Coin Changing

Instance: A list of coin denominations, \(1 = d_1, d_2, \ldots, d_n \), and a positive integer \(T \), which is called the **target sum**.

Find: An \(n \)-tuple of non-negative integers, say \(A = [a_1, \ldots, a_n] \), such that \(T = \sum_{i=1}^{n} a_i d_i \) and such that \(N = \sum_{i=1}^{n} a_i \) is minimized.

There is a denomination with **unit value**!

In 0-1 knapsack, we only considered **two subproblems** in our recurrence: taking an item, or not.

Here we can do more than use a coin denomination or not.
Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_1, \ldots, d_i and target sum t.

<table>
<thead>
<tr>
<th>Exploring: some sensible base case(s)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General case:</td>
</tr>
<tr>
<td>What are the different ways we could use coin denomination d_i?</td>
</tr>
<tr>
<td>What subproblems / solutions should we use?</td>
</tr>
</tbody>
</table>

Final recurrence relation
Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_1, \ldots, d_i and target sum t.

Since $d_1 = 1$, we immediately have $N[1, t] = t$ for all t.

Also $N[i, 0] = 0$ for all i.

General case:
What are the different ways we could use coin denomination d_i?
What subproblems / solutions should we use?

Final recurrence relation
Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_1, \ldots, d_i and target sum t.

Since $d_1 = 1$, we immediately have $N[1, t] = t$ for all t.

For $i \geq 2$, the number of coins of denomination d_i is an integer j where $0 \leq j \leq \lfloor t/d_i \rfloor$.

If we use j coins of denomination d_i, then the target sum is reduced to $t - jd_i$, which we must achieve using the first $i - 1$ coin denominations.

Thus we have the following recurrence relation:

$$N[i, t] = \begin{cases}
\min\{j + N[i - 1, t - jd_i] : 0 \leq j \leq \lfloor t/d_i \rfloor\} & \text{if } i \geq 2 \\
t & \text{if } i = 1 \text{ OR } t = 0
\end{cases}$$

Also $N[i, 0] = 0$ for all i.
FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]$:

\[N[i, t] = \begin{cases} \min\{j + N[i - 1, t - jd_i] : 0 < j < |t/d_i|\} & \text{if } i > 2 \\ t & \text{if } i = 1. \end{cases} \]

OR $t = 0$

No data dependencies on any other array cells.

i-axis (coin type)

(recall: $N[i, t]$ uses coin types $1..i$)

t-axis (target sum remaining)
FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]$:

No data dependencies on any other array cells.

i-axis (coin type)
(recall: $N[i, t]$ uses coin types 1..i)

$$N[i, t] = \begin{cases} \min \{ j + N[i - 1, t - jd_i] : 0 \leq j \leq \lfloor t/d_i \rfloor \} & \text{if } i \geq 2 \\ t & \text{if } i = 1 \end{cases}$$

OR $t = 0$
FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]$:

\[
N[i, t] = \begin{cases}
\min\{j + N[i - 1, t - jd_i] : 0 \leq j \leq \lfloor t/d_i \rfloor\} & \text{if } i \geq 2 \\
t & \text{if } i = 1. \\
\text{OR } t = 0
\end{cases}
\]

i-axis (coin type)
(recall: $N[i, t]$ uses coin types $1 \ldots i$)

t-axis (target sum remaining)

We only look at the previous i-row!

It is sufficient to fill:
row $i=1$ (base case), then for ($i = 2 \ldots n$), for ($t = 0 \ldots T$)
\[N[i, t] = \begin{cases} \min\{j + N[i-1, t-jd_i] : 0 \leq j \leq \lfloor t/d_i \rfloor\} & \text{if } i \geq 2 \\ t & \text{if } i = 1. \end{cases} \]

\[J[i, t] = \#\text{ of coins of type } d_i \text{ used in } N[i, t] \]

Using other coin types:

```java
CoinChangingDP(d[1..n], T)
N = new table[1..n][0..T]
J = new table[1..n][0..T]

for t = 0..T // base cases where i=1
    N[1][t] = t
    J[1][t] = t

for i = 2..n // general cases
    for t = 0..T
        // initially best solution is 0 of d[i]
        N[i][t] = N[i-1][t]
        J[i][t] = 0

        // try j>0 coins of type d[i]
        for j = 1..floor(t / d[i])
            if j + N[i-1][t-j*d[i]] < N[i][t]
                N[i][t] = j + N[i-1][t-j*d[i]]
                J[i][t] = j // best is currently j of d[i]

return N[n][T] // can also return N, J
```

i.e., using coin \(d_1 = 1 \)

Compute \(\min\{\ldots\} \) over \(j = 0 \ldots \lfloor t/d_i \rfloor \)
Exercise for later:
compute the correct output
without using $J[i, t]$
(i.e., using only N, d, T)

Recall $J[i, t] = \# \text{ of coins of type } d_i \text{ used in } N[i, t]$

We start at $J[n][T] = \# \text{ of coins of type } d_n \text{ used in the optimal solution}$
CoinChangingDP(d[1..n], T)
N = new table[1..n][0..T]
J = new table[1..n][0..T]

for t = 0..T // base cases where i=1
N[1][t] = t
J[1][t] = t

for i = 2..n // general cases
for t = 0..T

// initially best solution is 0 of d[i]
N[i][t] = N[i-1][t]
J[i][t] = 0

// try j>0 coins of type d[i]
for j = 1..floor(t / d[i])
if j + N[i-1][t-j*d[i]] < N[i][t]
N[i][t] = j + N[i-1][t-j*d[i]]
J[i][t] = j // best is currently j of d[i]

return N[n][T] // can also return N, J

Time complexity?

Unit cost computational model is reasonable here

Consider instance $I = (d, T)$

Runtime $R(I) \in O\left(\sum_{i=2}^{n} \sum_{t=0}^{T} \left\lfloor \frac{t}{d_i} \right\rfloor \right)$

$R(I) \in O\left(\sum_{i=2}^{n} \frac{1}{d_i} \sum_{t=0}^{T} t \right)$

$R(I) \in O\left(\sum_{i=2}^{n} \frac{1}{d_i} \left(\frac{T(T+1)}{2}\right) \right)$

$R(I) \in O(DT^2)$

where $D = \sum_{i=2}^{n} \frac{1}{d_i} < n.$

If T is small, this is much better than brute force.
POLYNOMIAL TIME

• An algorithm runs in (worst case) **polynomial time** IFF its runtime \(R(I) \) on every input is upper bounded by a polynomial in the input size \(S \)

 • i.e., \(R(I) \in O(c_0 + c_1 S + c_2 S^2 + c_3 S^3 + \ldots + c_k S^k) \)

 for constants \(k \) and \(c_0, \ldots, c_k \)

• … so is \(O(nT^2) \) polynomial in our input size \(S ? \)
INPUT SIZE

• $S = \text{bits}(T) + \text{bits}(d_1) + \cdots + \text{bits}(d_n)$

• It takes $\lceil \log_2 T \rceil$ bits to store T

• It takes $\lceil \log_2 d_i \rceil$ bits to store each d_i

• Assume $d_i \leq T$ (otherwise d_i cannot be used at all, and should be omitted from the input)
 • Then we have $\lceil \log_2 d_i \rceil \in O(\log T)$
 • So, $S \in O(n \log T)$
COMPARING $T(I)$ TO S

• Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$

• As an example, if n is fixed at 10 and T is allowed to vary, then $S \in O(\log T)$ and $R(I) \in O(T^2)$

 • In this case, $R(I)$ is exponential in S

• However, if T is fixed at 10 and n is allowed to vary, then $S \in O(n)$ and $R(I) \in O(n)$

 • In this case, $R(I)$ is linear in S

• So, large n and small T is where this DP solution shines!
A BIT MORE ANALYSIS

• Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$

• If $T \in O(n)$, then $S \in O(n \log n)$ and $R(I) \in O(n^3)$
 • Note $O(n^3)$ is a smaller runtime than $O(S^3) = O(n^3 \log n)$
 • And S^3 is polynomial in S, so $O(n^3)$ is a polynomial runtime

• So, for some inputs with relatively small T, we can get polynomial runtimes!
 • In particular, for $T \in O(n^k)$ where k is constant,
 $R(I) \in O\left(n(n^k)^2\right) = O(n^{2k+1})$ and $S \in O(n \log n^k) = O(n \log n)$
 • And $R(I) \in O(n^{2k+1}) \subseteq O\left((n \log n)^{2k+1} \right) = O(S^{2k+1})$