CS 341: ALGORITHMS

Lecture 8: greedy algorithms II
Readings: see website

Trevor Brown (co-taught with Anna Lubiw)
https://www.student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
KNAPSACK PROBLEMS
Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i \leq M$.

Gotta respect the weight limit...
Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i \leq M$.

In the 0-1 Knapsack problem (often denoted just as Knapsack), we require that $x_i \in \{0, 1\}$, $1 \leq i \leq n$.

In the Rational Knapsack problem, we require that $x_i \in \mathbb{Q}$ and $0 \leq x_i \leq 1$, $1 \leq i \leq n$.

Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_i x_i$.

0-1 Knapsack: NP Hard. Probably requires exponential time to solve...

Rational knapsack: Can be solved in polynomial time by a greedy alg!

Lets discuss this now... other one later
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 1**: consider items in *decreasing* order of profit (i.e., we maximize the local evaluation criterion p_i)

• Let’s try an example input
 • Profits $P = [20, 50, 100]$
 • Weights $W = [10, 20, 10]$
 • Weight limit $M = 10$

• Algorithm selects last item for 100 profit
 • Looks optimal in this example
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 1**: consider items in **decreasing** order of profit (i.e., we maximize the local evaluation criterion p_i)

• How about a **second example input**

 • Profits $P = [20, 50, 100]$
 • Weights $W = [10, 20, 100]$
 • Weight limit $M = 10$

 • Algorithm selects last item for **10** profit

 • **Not optimal!**
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 2**: consider items in increasing order of weight (i.e., we minimize the local evaluation criterion w_i)

• **Counterexample**
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 100]$
 - Weight limit $M = 10$

- Algorithm selects first item for 20 profit
 - It **could** select half of second item, for 25 profit!
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 3:** consider items in **decreasing** order of **profit divided by weight** (i.e., we maximize local evaluation criterion p_i/w_i)

• Let’s try our first example input

 • Profits $P = [20, 50, 100]$

 • Weights $W = [10, 20, 10]$

 • Weight limit $M = 10$

• Profit divided by weight

 • $P/W = [2, 2.5, 10]$

• Algorithm selects last item for 100 profit (optimal)
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

• **Strategy 3**: consider items in *decreasing* order of profit divided by weight (i.e., we maximize local evaluation criterion p_i/w_i)

• Let’s try our second example input
 • Profits $P = [20, 50, \textbf{100}]$
 • Weights $W = [10, 20, 100]$
 • Weight limit $M = 10$

• Profit divided by weight
 • $P/W = [2, 2.5, 1]$

• Algorithm selects second item for 25 profit (optimal)

It turns out strategy #3 is optimal...
Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
 sort A by decreasing profit divided by weight
 let p[1..n] be the profits in A
 let w[1..n] be the weights in A
 return GreedyRationalKnapsack(p, w, M)

GreedyRationalKnapsack(p[1..n], w[1..n], M)
 X = [0, ..., 0] // No items are chosen yet
 weight = 0 // Current weight of knapsack
 for i = 1..n // For all items
 if weight + w[i] > M then
 X[i] = (M - weight) / w[i]
 break
 else
 X[i] = 1
 weight = weight + w[i]
 return X

Either X=(1,1,...,1,0,...,0) or X=(1,1,...,1,x_i,0,...,0) where x_i ∈ (0,1)
Running time complexity?

Can do preprocessing in $\Theta(n \log n)$

Create array in $\Theta(n)$ time

$\Theta(n)$ iterations each doing $\Theta(1)$ work

Total $\Theta(n \log n)$ (or $\Theta(n)$ if input is already sorted)
INFORMAL FEASIBILITY ARGUMENT
(SHOULD BE GOOD ENOUGH FOR ASSESSMENTS)

• Feasibility: all x_i are in $[0, 1]$ and total weight is $\leq M$
• Either everything fits in the knapsack, or:
• When we exit the loop, weight is exactly M
• Every time we write to x_i it’s either 0, 1 or
 $(M - \text{weight})/w_i$ where \text{weight} + w[i] > M
 • Rearranging the latter we get $(M - \text{weight})/w_i < 1$
 • And weight $\leq M$,
 so $(M - \text{weight})/w_i \geq 0$
• So, we have $x_i \in [0, 1]$

```
for i = 1..n
  if weight + w[i] > M then
    X[i] = (M - weight) / w[i]
    break
  else
    X[i] = 1
    weight = weight + w[i]
```
Does NOT change behaviour of the algorithm at all!
FORMAL FEASIBILITY ARG

• Loop invariant: \(\forall i : x_i \in [0,1] \)

 \[
 \text{and } weight = \sum_{i=1}^{n} w_i x_i \leq M
 \]

• Base case. Initially weight = 0 and \(\forall i : x_i = 0 \).

 So 0 = weight = \(\sum_{i=1}^{n} w_i \cdot 0 = \sum_{i=1}^{n} w_i x_i \leq M \)

• Inductive step.

 • Suppose invariant holds at start of iteration \(i \)

 • Let \(weight', x_i' \) denote values of \(weight, x_i \) at \text{end} of iteration \(i \)

 • Prove invariant holds at end of iteration \(i \)

 • i.e., \(\forall i : x_i' \in [0,1] \text{ and } weight' = \sum_{i=1}^{n} w_i x_i' \leq M \)
FORMAL FEASIBILITY ARG

- **WTP:** $\forall_i : x'_i \in [0, 1]$ and $weight' = \sum_{i=1}^{n} w_i x'_i \leq M$

- **Case 1:** $weight + w_i \leq M$
 - $x'_i = 1 \text{ which is in } [0, 1]$ (by line 11)
 - $weight' = weight + w_i$ (by line 12)
 and this is $\leq M$ by the case
 - $weight' = \sum_{k=1}^{n} x_k w_k + w_i$ (by invariant)
 - $weight' = \sum_{k=1}^{n} x_k w_k + x'_i w_i$ (since $x'_i = 1$)
 - And $x'_k = x_k$ for all $k \neq i$ and $x_i = 0$ so $\sum_{k=1}^{n} x'_k w_k = x'_i w_i + \sum_{k=1}^{n} x_k w_k$
 - Rearrange to get $\sum_{k=1}^{n} x_k w_k = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i)$
 - So $weight' = (\sum_{k=1}^{n} x'_k w_k - x'_i w_i) + x'_i w_i = \sum_{k=1}^{n} x'_k w_k$

```plaintext
for i = 1..n
  if weight + w[i] > M then
    X[i] = (M - weight) / w[i]
    weight = M
    break
  else
    X[i] = 1
    weight = weight + w[i]
```
• WTP: \(\forall i : x_i' \in [0, 1] \) and \(\text{weight}' = \sum_{i=1}^{n} w_i x_i' \leq M \)

• Case 2: \(\text{weight} + w_i > M \)
 • We have \(w_i > M - \text{weight} \) and \(M - \text{weight} \geq 0 \)
 • So \(0 \leq \frac{M - \text{weight}}{w_i} < 1 \) which means \(x_i' \in [0, 1) \)

• \(\text{weight}' = M = \text{weight} + (M - \text{weight}) \) (by line 8)

• \(\text{weight}' = \sum_{k=1}^{n} x_k w_k + (M - \text{weight}) \) (by invariant)

• But \(x_k' = x_k \) for all \(k \neq i \) and \(x_i = 0 \) so \(\sum_{k=1}^{n} x_k' w_k = x_i' w_i + \sum_{k=1}^{n} x_k w_k \)

• Rearrange to get \(\sum_{k=1}^{n} x_k w_k = (\sum_{k=1}^{n} x_k' w_k - x_i' w_i) \)

• So \(\text{weight}' = (\sum_{k=1}^{n} x_k' w_k - x_i' w_i) + (M - \text{weight}) \)

• And \(M - \text{weight} = x_i' w_i \) so \(\text{weight}' = \sum_{k=1}^{n} x_k' w_k \)
OPTIMALITY

For simplicity, assume that the profit / weight ratios are all distinct, so

\[
\frac{p_1}{w_1} > \frac{p_2}{w_2} > \ldots > \frac{p_n}{w_n}.
\]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \).

To obtain a contradiction

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

\(X \) and \(Y \) are identical up to \(x_j \) and \(y_j \), respectively
What's the relationship between x_j and y_j?
Can we have $y_j > x_j$?

No! Greedy would take more of item j if it could.
Greedy solution X

Optimal solution Y

$j = \text{first index where the solutions differ}$

$\frac{\text{fraction of item in knapsack}}{\text{Item } 1, \text{Item } 2, \ldots, \text{Item } j, \ldots, \text{Item } n}$

$x_1, x_2, \ldots, x_j, \ldots, x_n$

$y_1, y_2, \ldots, y_{j-1}, \ldots, y_n$

$\frac{(x_j - y_j)}{\text{Must have } y_j < x_j}$
Greedy solution X

Optimal solution Y

$j =$ first index where the solutions differ

Can Y be all zeros after y_j?

No! It would be worth less than X
Greedy solution X

Optimal solution Y

Must exist $k > j$ such that $y_k > 0$

But, by our sort order, item j is worth more (per unit of weight) than item k!

Remove some of item k and replace it with some of item j?

How much of item k should we remove?
Since item j is worth **more per unit weight**, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add δ weight of item j.
Greedy solution X

Optimal solution Y

j = first index where the solutions differ

Modified optimal solution Y'

To move δ weight from item k to item j...

What fraction of item j are we adding?

$y'_j = y_j + \frac{\delta}{w_j}$

What fraction of item k are we removing?

$y'_k = y_k - \frac{\delta}{w_k}$

What fraction of item j are we adding?

$y'_j = y_j + \frac{\delta}{w_j}$

What fraction of item k are we removing?

$y'_k = y_k - \frac{\delta}{w_k}$

Fraction of item in knapsack

x_1, x_2, \ldots, x_j
The idea is to show that

Y' is feasible, and

$\text{profit}(Y') > \text{profit}(Y)$.

This contradicts the optimality of Y and proves that $X = Y$.

To show Y' is feasible, we show $y_k' \geq 0, y_j' \leq 1$ and $\text{weight}(Y') \leq M$.
FEASIBILITY

• To show Y' is feasible, we show $y'_{kc} \geq 0, y'_{j} \leq 1$ and $\text{weight}(Y') \leq M$

• Let’s show $y'_{k} \geq 0$

 • By definition, $y'_{k} = y_{k} - \frac{\delta}{w_{k}}$

 • So, $y'_{k} \geq 0$ iff $y_{k} - \frac{\delta}{w_{k}} \geq 0$ iff $\delta \leq y_{k}w_{k}$

 • And y_{k} and w_{k} are both positive

 • So, this constrains δ to be smaller than a positive number

 • Therefore, it is possible to choose positive δ s.t. $y'_{k} \geq 0$
FEASIBILITY

• To show Y' is feasible, we show $y'_{jk} \geq 0, y'_{j} \leq 1$ and $\text{weight}(Y') \leq M$

• Now let's show $y'_{j} \leq 1$

 • By definition, $y'_{j} = y_{j} + \frac{\delta}{w_{j}}$

 • So, $y'_{j} \leq 1$ iff $y_{j} + \frac{\delta}{w_{j}} \leq 1$ iff $\delta \leq (1 - y_{j})w_{j}$

 • Recall $y_{j} < x_{j}$, so $y_{j} < 1$, which means $(1 - y_{j}) > 0$

 • So, this constrains δ to be smaller than some positive number
FEASIBILITY

• Finally, we show \(\text{weight}(Y') \leq M \)

• Recall changes to get \(Y' \) from \(Y \)
 • We move \(\delta \) weight from item \(k \) to item \(j \)
 • This does not change the total weight!
 • So \(\text{weight}(Y') = \text{weight}(Y) \leq M \)
 • Therefore, \(Y' \) is feasible!
OPTIMALITY

• Finally we compute \(\text{profit}(Y') \)

\[
\text{profit}(Y') = \text{profit}(Y) + \frac{\delta}{w_j} p_j - \frac{\delta}{w_k} p_k
\]

\[
= \text{profit}(Y) + \delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right)
\]

• Since \(j \) is before \(k \), and we consider items with more profit per unit weight first, we have \(\frac{p_j}{w_j} > \frac{p_k}{w_k} \).

• So, if \(\delta > 0 \) then \(\delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right) > 0 \)

• Since we can choose \(\delta > 0 \), we have \(\text{profit}(Y') > \text{profit}(Y) \).

(Fraction of item \(j \) added) \(\times \) (profit for item \(j \))

(Fraction of item \(k \) removed) \(\times \) (profit for item \(k \))

Contradicts optimality of \(Y \)!
So assumption \(X \neq Y \) is bad.
Therefore, \(X \) is optimal.
PROBLEM: COIN CHANGING
Problem 4.5

Coin Changing

Instance: A list of coin denominations, d_1, d_2, \ldots, d_n, and a positive integer T, which is called the target sum.

Find: An n-tuple of non-negative integers, say $A = [a_1, \ldots, a_n]$, such that $T = \sum_{i=1}^{n} a_i d_i$ and such that $N = \sum_{i=1}^{n} a_i$ is minimized.

In the Coin Changing problem, a_i denotes the number of coins of denomination d_i that are used, for $i = 1, \ldots, n$.

The total value of all the chosen coins must be exactly equal to T. We want to minimize the number of coins used, which is denoted by N.
EXAMPLE: CANADIAN COINS (R.I.P. PENNY)
EXAMPLE: CANADIAN COINS

• Input: coin denominations = 200, 100, 25, 10, 5, 1 (R.I.P.)
 target sum $T = 155$

• Output: minimum number of coins to pay T
 (and list of coins)

• Solution: $1 \times 100 + 2 \times 25 + 1 \times 5$; 4 coins

• Suggestion for an algorithm?
 • Sort coin denominations from largest to smallest value
 • Greedily use the largest possible coin at all times
GreedyCoinChanging(D[1..n], T)
 sort D in decreasing order
 used = [0, ..., 0]
 for i = 1..n
 used[i] = floor(T / D[i])
 T = T - (used[i] * D[i])
 if T > 0 then return FAIL
 return used
OPTIMALITY

• Is this algorithm optimal?

• Trying to build a correctness argument:
 • Fix part of the input:
 • Canadian coin system (including pennies)
 • Try to prove optimality for all target sums T

• Reasoning about one class of inputs at a time can make an algorithm easier to understand
We will prove that the greedy algorithm always finds an optimal solution for coin denominations $D = [100, 25, 10, 5, 1]$.

We will make use of the following properties of any optimal solution:

1. the number of pennies is at most 4 (replace five pennies by a nickel)
2. the number of nickels is at most 1 (replace two nickels by a dime)
3. the number of quarters is at most 3 (replace four quarters by a loonie), and
4. the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel; replace two dimes and a nickel by a quarter; the number of nickels is at most one).

The proof is by induction on T. As (trivial) base cases, we can take $T = 1, 2, 3, 4$.
Inductive step (T>4): assume greedy makes optimal change for target values less than T. Show it makes optimal change for T.

Suppose 5 ≤ T < 10. First, assume there is no nickel in the optimal solution. Then the optimal solution contains only of pennies, so $T \leq 4$ (property (1)); contradiction. Therefore the optimal solution contains at least one nickel. Clearly the greedy solution contains at least one nickel. By induction, the greedy solution for $T - 5$ is optimal. Therefore the greedy solution for T is also optimal.

(1) the number of pennies is at most 4 (replace five pennies by a nickel)
(2) the number of nickels is at most 1 (replace two nickels by a dime)
(3) the number of quarters is at most 3 (replace four quarters by a loonie), and
(4) the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel; replace two dimes and a nickel by a quarter; the number of nickels is at most one).
Recall:
properties of any optimal solution

Suppose $10 \leq T < 25$. First, assume there is no dime in the optimal solution. Then the optimal solution contains only nickels and pennies, so $T \leq 5 + 4 = 9$ (property (2)); contradiction. Therefore the optimal solution contains at least one dime. Clearly the greedy solution contains at least one dime. By induction, the greedy solution for $T - 10$ is optimal. Therefore the greedy solution for T is also optimal.

(1) the number of pennies is at most 4 (replace five pennies by a nickel)
(2) the number of nickels is at most 1 (replace two nickels by a dime)
(3) the number of quarters is at most 3 (replace four quarters by a loonie), and
(4) the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel; replace two dimes and a nickel by a quarter; the number of nickels is at most one).
EXERCISE: $25 \leq T < 100$

Suppose $10 \leq T < 25$. First, assume there is no dime in the optimal solution. Then the optimal solution contains only nickels and pennies, so $T \leq 5 + 4 = 9$ (property (2)); contradiction. Therefore the optimal solution contains at least one dime. Clearly the greedy solution contains at least one dime. By induction, the greedy solution for $T - 10$ is optimal. Therefore the greedy solution for T is also optimal.

(1) the number of pennies is at most 4 (replace five pennies by a nickel)
(2) the number of nickels is at most 1 (replace two nickels by a dime)
(3) the number of quarters is at most 3 (replace four quarters by a loonie), and
(4) the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel; replace two dimes and a nickel by a quarter; the number of nickels is at most one).
Exercise: suppose $25 \leq T < 100$

- Find one coin that must be in optimal & greedy to reduce this case to making change for less than T
- Assume no quarters in optimal solution
 - Then by properties 1&4, the optimal solution uses at most: (4 pennies) and (2 nickels or dimes)
 - Max value is therefore 24 cents, so cannot make T change!
- So optimal contains a quarter. (And so does greedy.)
- By inductive hypothesis, greedy is optimal for $T - 25$.
- So, greedy is optimal for T.

Contradiction!
• Exercise: suppose $100 \leq T < 200$
 • Find one coin that must be in optimal & greedy to reduce this case to making change for less than T
 • Assume no loonies in optimal solution
 • Then by properties 1, 3, 4, the optimal solution uses at most: (4 pennies) and (2 nickels or dimes) and (3 quarters)
 • Max value is therefore 99 cents, so cannot make T change!
• So optimal contains a loonie. (And so does greedy.)
• By inductive hypothesis, greedy is optimal for $T - 100$.
• So, greedy is optimal for T.
• Exercise for outside lecture: $200 \leq T$
WHAT ABOUT OTHER COIN SYSTEMS?

• Optimal for old Canadian coin system
• How about new Canadian coin system?
 • Denominations: 200, 100, 25, 10, 5
 • Some values can’t be created at all!
• How about the old British coin system
 • Denominations: 30, 24, 12, 6, 3, 1
 • Counter-example: T=48. Greedy=30,12,6 ; Opt=24,24
• What makes a coin system optimal / non-optimal?
MORE CHALLENGING HOME EXERCISE:

• Show greedy is optimal for any coin system satisfying:
 • $d_j \mid d_{j-1}$ for all $j, 2 \leq j \leq n$
 • Hints (tiny font, so no spoilers):

• Is greedy **non-optimal** for every coin system that **does not** satisfy this property?

• **No**, it’s optimal for old Canadian coins even though 10 does not divide 25

• So, the above condition is **sufficient** but **not necessary**