Problem 4.4

Knapsack
Instance: Profits $P = \{p_1, \ldots, p_n\}$, weights $W = \{w_1, \ldots, w_n\}$, and a capacity M. These are all positive integers.
Feasible solution: A subset $X = \{i_1, \ldots, i_k\}$ where $\sum_{i=1}^{k} w_{i} \leq M$.

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

- **Strategy 1:** Consider items in decreasing order of profit (i.e., we maximize the local evaluation criterion p_j)
- Let’s try an example input
 - Profits $P = [20,30,100]$
 - Weights $W = [10,20,10]$
 - Weight limit $M = 10$
- Algorithm selects last item for 100 profit
 - Looks optimal in this example
POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

- **Strategy 2**: consider items in *increasing* order of weight (i.e., we minimize the local evaluation criterion w_j)
 - **Counterexample**
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 100]$
 - Weight limit $M = 10$
 - Algorithm selects first item for 20 profit
 - **If could** select half of second item, for 25 profit!

- **Strategy 3**: consider items in *decreasing* order of profit divided by weight (i.e., we maximize local evaluation criterion p_j/w_j)
 - Let's try our first example input
 - Profits $P = [20, 50, 100]$
 - Weights $W = [10, 20, 100]$
 - Weight limit $M = 10$
 - Profit divided by weight
 - $P/W = [2, 2.5, 1]$
 - Algorithm selects last item for 100 profit (optimal)

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

INFORMAL FEASIBILITY ARGUMENT

(should be good enough to show feasibility on assessments)

- Feasibility: all x_i are in $[0, 1]$ and total weight $w \leq M$
- Either everything fits in the knapsack, or
- When we exit the loop, weight is exactly M
- Every time we write to x_i it's either 0, 1 or $(M - weight)/w_i$ where weight + $w[i] > M$
- Rearranging the latter we get $(M - weight)/w_i < 1$
- And weight $\leq M$
 - So $(M - weight)/w_i \geq 0$
 - So, we have $x_i \in [0, 1]$
MINOR MODIFICATION TO FACILITATE FORMAL PROOF

```cpp
GreedyRationalKnapsack(p[1...n], w[1...n], W)
X = [0, ... , 0]
weight = 0
for i = 1 ... n
  if weight + w[i] <= W then
    weight = w[i]
    break
  else
    X[i] = 1
    weight = weight + w[i]
return X
```

Does NOT change behaviour of the algorithm at all!

FORMAL FEASIBILITY ARG

- Loop Invariant: \(V_j : x_j \in [0,1] \)
- \(\text{and weight} = \sum_{i=1}^{n} w_i x_i \leq M \)
- Base case, initially weight = 0 and \(V_j : x_j = 0 \),
 \(\text{So} \ 0 = \text{weight} = \sum_{i=1}^{n} w_i x_i \leq M \)
- Inductive step,
 \(\text{Suppose invariant holds at start of iteration } i \)
 \(\text{Let weight}' , x_i' \) denote values of weight, \(x_i \) at end of iteration \(i \)
 \(\text{Prove invariant holds at end of iteration } i \)
 \(\text{i.e., } V_j : x_j \in [0,1] \text{ and weight}' = \sum_{i=1}^{n} w_i x_i' \leq M \)

FORMAL FEASIBILITY ARG

- WTP: \(V_j : x_j \in [0,1] \)
 \[\text{and weight} = \sum_{i=1}^{n} w_i x_i \leq M \]
- Case 1: weight + \(w_i \leq M \)
 \(x_i = 1 \text{ which is } x_i \in [0,1] \) \(\text{by line 11} \)
 \(\text{weight}' = \text{weight} + w_i \) \(\text{by line 12} \)
 and \(\text{this is } M \text{ by the case} \)
 \(\text{weight}' = \sum_{i=1}^{n} w_i x_i + w_i \) \(\text{by invariant} \)
 \(\text{weight}' = \sum_{i=1}^{n} w_i x_i + x_i w_i \) \(\text{since } x_i = 1 \)
 \(\text{And } x_i' = x_i = x_i \) \(\text{for all } k \neq i \text{ and } x_i = 0 \text{ so } \sum_{k=1}^{n} x_i w_k = x_i w_i + \sum_{k=1}^{n} x_k w_k \)
 \(\text{Rearrange to get } \sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} x_i w_i - x_i w_i \)
 \(\text{So weight}' = \sum_{i=1}^{n} x_i w_i - x_i w_i + x_i w_i = \sum_{i=1}^{n} x_i w_i \)

FORMAL FEASIBILITY ARG

- WTP: \(V_j : x_j \in [0,1] \)
 \[\text{and weight} = \sum_{i=1}^{n} w_i x_i \leq M \]
- Case 2: weight + \(w_i > M \)
 \(\text{We have } w_i > M - \text{weight} \) \(\text{and } M = \text{weight} \geq 0 \)
 \(\text{by case} \)
 \(\text{So } w_i \leq \|M - weight\| < 1 \text{ which means } x_j \in [0,1] \)
 \(\text{weight}' = M = \text{weight} + \text{(M - weight)} \) \(\text{by line 8} \)
 \(\text{weight}' = \sum_{i=1}^{n} w_i x_i + (M - \text{weight}) \) \(\text{by invariant} \)
 \(\text{But } x_i' = x_i \text{ for all } k \neq i \text{ and } x_i = 0 \text{ so } \sum_{k=1}^{n} x_i w_k = x_i w_i + \sum_{k=1}^{n} x_k w_k \)
 \(\text{Rearrange to get } \sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} x_i w_i - x_i w_i \)
 \(\text{So weight}' = \sum_{i=1}^{n} x_i w_i - x_i w_i + (M - \text{weight}) \)
 \(\text{And } M = \text{weight} \text{ so weight}' = \sum_{i=1}^{n} x_i w_i \)

OPTIMALITY

For simplicity, assume that the profit / weight ratios are all distinct, so

- \(p_1 / w_1 > p_2 / w_2 > \cdots > p_n / w_n \)

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \) to obtain a contradiction.

Pick the smallest integer \(j \) such that \(x_j
eq y_j \).

Then \(x_j \) and \(y_j \) are identical up to \(x_j \) and \(y_j \), respectively.

\(X = Y \) if \(j \) first index where the solutions differ.

What's the relationship between \(x_j \) and \(y_j \)?
Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?

Since item j is worth more per unit weight, replacing even a tiny amount of item k with item j will improve the solution.

So, we remove an infinitesimal $\delta > 0$ of weight of item k, and add it weight of item j.

Must exist $\delta > 0$ such that $y' > 0$.

Remove some of item k and replace it with some of item j.

How much of item k should we remove?

To move δ weight from item k to item j...

What fraction of item j are we adding?

What fraction of item k are we removing?
Modified optimal solution Y'. The idea is to show that Y' is feasible, and
profit(Y') > profit(Y).
This contradicts the optimality of Y and proves that $X = Y$.
To show Y' is feasible, we show $y'_j \geq 0, y'_j' \leq 1$ and weight(Y') \leq M.

FEASIBILITY OF Y'
- To show Y' is feasible, we show $y'_j \geq 0, y'_j' \leq 1$ and weight(Y') \leq M.
- Now let's show $y'_j' \leq 1$.
 - By definition, $y'_j' = y_j' + \frac{\delta}{w_j}$.
 - So, $y'_j' \leq 1$ iff $y_j' + \frac{\delta}{w_j} \leq 1$ iff $\delta \leq (1 - y_j') \frac{w_j}{\delta}$.
- Recall $y_j < x_j$, so $y_j < 1$, which means $(1 - y_j') > 0$.
- So, this constrains δ to be smaller than some positive number.

FEASIBILITY OF Y''
- Finally, we show weight(Y'') \leq M.
 - Recall changes to get Y'' from Y'.
 - We move a weight from item j to item k.
 - This does not change the total weight.
 - So weight(Y'') = weight(Y) \leq M.
 - Therefore, Y'' is feasible.

SUPERIORITY OF Y''
- Finally we compute profit(Y'').
 - profit(Y'') = profit(Y) + $\frac{\delta}{w_j} p_j - \frac{\delta}{w_k} p_k$

 = profit(Y) + $\delta (\frac{p_j}{w_j} - \frac{p_k}{w_k})$
 - Since j is before k, and we consider items with more profit per unit weight first, we have $\frac{p_j}{w_j} > \frac{p_k}{w_k}$.
 - So, if $\delta > 0$ then $\delta (\frac{p_j}{w_j} - \frac{p_k}{w_k}) > 0$.
 - Since we can choose $\delta > 0$, we have profit(Y'') > profit(Y).

PROBLEM: COIN CHANGING
Problem 4.5

Coin Changing

Instance: A list of coin denominations, \(\{d_1, d_2, \ldots, d_n\} \), and a positive integer \(T \), which is called the target sum.

Task: An instance of non-negative integers, say \(\{x_1, \ldots, x_n\} \), such that \(T = \sum x_i d_i \), and such that \(N = \sum x_i \), is minimized.

In the Coin Changing problem, \(x_i \) denotes the number of coins of denomination \(d_i \), that are used, for \(i = 1, \ldots, n \).

The total value of all the chosen coins must be exactly equal to \(T \). We want to minimize the number of coins used, which is denoted by \(N \).

EXAMPLE: CANADIAN COINS (R.I.P. PENNY)

- Input: coin denominations \(= 200, 100, 25, 10, 5, 1 \) (R.I.P.)
- Target sum \(T = 155 \)
- Output: minimum number of coins to pay \(T \)
 (and list of coins)
- Solution: \(1 \times 100 + 2 \times 25 + 1 \times 5 \) ; 4 coins
- Suggestion for an algorithm:
 - Sort coin denominations from largest to smallest value
 - Greedily use the largest possible coin at all times

OPTIMALITY

- Is this algorithm optimal?
- Trying to build a correctness argument:
 - Fix part of the input:
 - Canadian coin system (including pennies)
 - Try to prove optimality for all target sums \(T \)
 - Reasoning about \textbf{one class of inputs} at a time can make an algorithm easier to understand
Inductive step (T>4): Assume greedy makes optimal change for target values less than T. Show it makes optimal change for T.

Suppose 5 ≤ T < 10. First, assume there is no dime in the optimal solution. Then the optimal solution contains only pennies, so 7 ≤ T ≤ 9 (property (3)); contradiction. Therefore the optimal solution contains at least one dime. Clearly the greedy solution contains at least one dime. By induction, the greedy solution for T = 5 is optimal. Therefore the greedy solution for T is also optimal.

Recall: properties of any optimal solution

(1) the number of pennies is at most 4 (replace five pennies by a nickel)
(2) the number of nickels is at most 1 (replace two nickels by a dime)
(3) the number of quarters is at most 3 (replace four quarters by a loone), and
(4) the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel, replace two dimes and a nickel by a quarter, the number of nickels is at most one).

Exercise: 25 ≤ T < 100

Recall: proof for 10 ≤ T < 25

Suppose 10 ≤ T ≤ 25. First, assume there is no dime in the optimal solution. Then the optimal solution contains only nickels and pennies, so 7 ≤ T ≤ 25 (property (1)); contradiction. Therefore the optimal solution contains at least one dime. Clearly the greedy solution contains at least one dime. By induction, the greedy solution for T = 25 is optimal. Therefore the greedy solution for T is also optimal.

Recall: properties of any optimal solution

(1) the number of pennies is at most 4 (replace five pennies by a nickel)
(2) the number of nickels is at most 1 (replace two nickels by a dime)
(3) the number of quarters is at most 3 (replace four quarters by a loone), and
(4) the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel, replace two dimes and a nickel by a quarter, the number of nickels is at most one).

Exercise: suppose 25 ≤ T < 100

• Find one coin that must be in optimal & greedy to reduce this case to making change for less than T
• Assume no loonies in optimal solution
 • Then by properties 1, 3, 4, the optimal solution uses at most: (4 pennies) and (2 nickels or dimes) and (3 quarters)
 • Max value is therefore 99 cents, so cannot make T change
 • So optimal contains a loone. (And so does greedy.)
 • By inductive hypothesis, greedy is optimal for T = 100.
 • So, greedy is optimal for T.

Exercise: suppose 100 ≤ T < 200

• Find one coin that must be in optimal & greedy to reduce this case to making change for less than T
• Assume no loonies in optimal solution
 • Then by properties 1, 3, 4, the optimal solution uses at most: (4 pennies) and (2 nickels or dimes) and (3 quarters)
 • Max value is therefore 99 cents, so cannot make T change
 • So optimal contains a loone. (And so does greedy.)
 • By inductive hypothesis, greedy is optimal for T = 100.
 • So, greedy is optimal for T.

Exercise for outside lecture: 200 ≤ T

What about other coin systems?

• Optimal for old Canadian coin system
• How about new Canadian coin system?
 • Denominations: 200, 100, 25, 10, 5
 • Same values can't be created at all
• How about the old British coin system
 • Denominations: 30, 24, 12, 6, 3, 1
 • Counter-example: T=48, Greedy=30,12,6; Opt=24,24
• What makes a coin system optimal / non-optimal?
MORE CHALLENGING HOME EXERCISE:

- Show greedy is optimal for any coin system satisfying:
 - \(d_j | d_{j-1} \) for all \(2 \leq j \leq n \)
 - Hints (tiny font, so no spoilers):

- Is greedy non-optimal for every coin system that does not satisfy this property?
 - No. It’s optimal for old Canadian coins even though 10 does not divide 25
 - So, the above condition is sufficient but not necessary