OPTIMALITY PROOF WITHOUT DISTINCTNESS

- There may be many optimal solutions.
- **Key idea:** Let Y be an optimal solution that matches X on a maximal number of indices.
- Observe: if X is really optimal, then $Y = X$.
 - Suppose not for contra.
 - We will modify Y to make it match X on one more index (a contradiction).
 - As before, let j be the first index where X and Y differ.

RETURNING TO RATIONAL KNAPSACK

- What if we cannot assume distinctness for profit/weight ratios in the proof?
- There is no longer a unique optimal solution.
- So cannot prove optimal Y must be identical to greedy X.
- Swapping might not improve the solution.
Greedy solution X

Optimal solution Y

\[d = \min(w_j(x_j - y_j), w_k(y_k - x_k)) \]

Modified optimal solution Y'

\[y'_j = y_j + \delta \]

\[y'_k = y_k - \delta \]

In the case pictured here we have \(\delta = w_j(x_j - y_j) \), so we end up with \(y'_j = x_j \).

Feasibility of Y'

- Showing \(y'_j \geq 0 \)
 - By definition, \(y'_j = y_j + \frac{\delta}{w_j} \geq 0 \) if \(\delta \leq y_j w_k \)
 - But \(\delta \) is the minimum of \(w_j(x_j - y_j) \leq w_k y_k \) and another expr.
 - So \(\delta \leq y_j w_k \)

- Showing \(y'_j \leq 1 \)
 - \(y'_j = y_j + \frac{\delta}{w_j} \leq 1 \) if \(\frac{\delta}{w_j} \leq 1 - y_j \) \(\iff \delta \leq w_j(1 - y_j) \) (rearranging)
 - \(\delta \leq w_j(x_j - y_j) \) (definition of \(\delta \))
 - \(\delta \leq w_j(x_j - y_j) \leq w_j(1 - y_j) \) (by feasibility of X)

Profit of Y'

- \(\text{profit}(Y') = \text{profit}(Y') + \frac{\delta}{w_j} y_j = \text{profit}(Y') + \left(\frac{y_j}{w_j} - 1 \frac{w_k}{w_j} \right) \)

- Since \(j \) is before \(k \), and we consider items with more profit per unit weight first, we have \(\frac{y_j}{w_j} \geq \frac{y_k}{w_k} \).

- Since \(\delta > 0 \) and \(\frac{y_k}{w_k} \geq 1 \), we have \(\frac{\delta}{w_j} \leq \frac{w_k}{w_j} \geq 0 \)

- Since \(Y \) is optimal, \(\delta \) cannot be positive

- So \(Y' \) is a new optimal solution

- that matches \(X \) on one more index than \(Y \)

- Contradiction: \(Y \) matched \(X \) on a maximal number of indices!

Richard Bellman, the inventor of dynamic programming in 1950, related the following in his autobiography.

"What else, what came, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, in some good word for various reasons, I decided therefore to use the word, programming. I wanted to get across the idea that this was dynamic, this was multivariate, this was time-varying—I thought, less kill two birds with one stone. IExports a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is its opposite in the word, dynamical, in a predicate sense. Think thinking of some convention that will possibly give it a precise meaning, its impossible. Thus, I thought dynamic programming was a good sense. It was something not even a Congressman could object to. So I used it as an umbrella for my activities."

"Bottom-up recursion" might also a reasonable name, as we'll see...
This is exponential in n. Is it exponential in the input size?

This overlap suggests dynamic programming may be able to help!

Or, if it's not an optimization problem, simply "determine if a solution for I can be expressed in terms of solutions to certain subproblems of I."

"...which enables the solution of I to be computed."
SOLVING FIB USING DYNAMIC PROGRAMMING

- **Optimal** Recursive Structure
 - Solution to n-th Fibonacci number \(f(n) \) can be expressed as the addition of smaller Fibonacci numbers
 - No notion of optimality for this particular problem
- Define Subproblems
 - The set subproblems that will be combined to obtain \(Fib(n) \)
 - \(S() = \{Fib(0), Fib(1), \ldots, Fib(n)\} \)
- Recurrence Relation
 - \(\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= f(n-1) + f(n-2) \quad n \geq 2
 \end{align*} \)
- Computing (Optimal) Solutions
 - Create table \(\{f[i] \ldots n \} \) and compute its entries "bottom-up"

DP SOLUTION

- **Space saving** optimization:
 - We never look at \(f[i-3] \) or earlier
 - Can make do with a few variables instead of a table

MODEL OF COMPUTATION FOR RUNTIME

- Unit cost model is not realistic for this problem, because Fibonacci numbers grow quickly
 - \(F[0] = 0 \)
 - \(F[1] = 1 \)
 - \(F[100] = 354224848179261915075 \)
 - \(F[1000] = 222323442942045529739893461909967206 \)
 - \(F[10000] \) = more than 200 digits
 - \(F[100000] \) = more than 2200 digits

FILLING THE TABLE "BOTTOM-UP"

- Key idea:
 - When computing a table entry, we must have already computed the entries it depends on
- Dependencies
 - Extract directly from recurrence
 - Entry \(n \) depends on \(n-1 \) and \(n-2 \)
 - Computing entries in order 1\ldots n guarantees \(n-1 \) and \(n-2 \) are already computed when we compute \(n \)

CORRECTNESS

- **Step 1**
 - Order 0, \(n \) means \(i-1 \) and \(i-2 \) are already computed
 - Prove that when computing a table entry, dependent entries are already computed
- **Step 2** (similar to D&C)
 - Suppose subproblems are solved correctly (optimally)
 - Prove these optimal subsolutions are combined into an optimal solution
 - Suppose \(f[i-1] \) and \(f[i-2] \) are the \(i-1 \)th and \(i-2 \)th Fib #s
 - \(f[i] = f[i-1] + f[i-2] \)
 - \(f[i] = \text{new array of size } n \)
 - \(f[0] = 0 \)
 - \(f[1] = 1 \)
 - \(f[i] = f[i-1] + f[i-2] \)
 - \(f[n] \) = the \(n \)th Fib #

How quickly does \(f_n \) grow? Let \(\phi = (1 + \sqrt{5})/2 \), then

\[
 f_n = \phi^n - (\phi^{-1})^n \left[\frac{\phi}{\sqrt{5}} \right].
\]

Therefore \(f_n \in \Theta(\phi^n) \) and hence we also have \(f_{n+1} \in \Theta(\phi^{n+1}) \).

The value \(\phi \approx 1.6 \) is the golden ratio.

- Value of \(f[n] \) is exponential in \(n \)
- So number of digits of \(f[n] \) is linear in \(n \)
- Big numbers suggest using bit-complexity model
RUNNING TIME
BIT COMPLEXITY MODEL
• f[0]=1, f[1]=1 have Θ(1) digits
• So f[n]=f[n-1]+f[n-2] takes Θ(n) time
• Θ(n) ∈ Σ_n=1 Θ(1) = Θ(n²)
• Is this quadratic runtime?
 • NO! This is “quadratic in n”
 • When we say “quadratic runtime” we mean “quadratic in the input size.”
 • What’s the input size S?
 • The input is the number n, so S = log n bits

TIPS FOR ANALYSIS OF DP ALGORITHMS
• Think carefully about which model of computation (unit cost / bit complexity) is appropriate
• If you can’t decide which is appropriate, you can try both and see if it changes the answer
• Think carefully about the input size S
 • Try to express runtime in terms of S
 • If that’s too hard, try to find an elegant/natural expression (see future lectures)
 • An algorithm is “linear time” only if it’s “linear in S”

OTHER MISCELLANEOUS TIPS
• Building a table of results bottom-up is what makes an algorithm DP
• There is a similar concept called memoization
 • But, for the purposes of this course, we want to see bottom-up table filling!
• Base cases are critical
 • They often completely determine the answer
 • Try setting f[1]=0 in RbDP...

ROD CUTTING
A “NEAT” DYNAMIC PROGRAMMING EXAMPLE
• Input:
 • n: length of rod
 • p₁, ..., pₙ: price of a rod of length i
• Output:
 • Max income possible by cutting the rod of length n into any number of integer pieces (maybe no cuts)

DYNAMIC PROGRAMMING APPROACH
• High level idea (can just think recursively to start)
 • Given a rod of length n
 • Either make no cuts, or make a cut and recurse on the remaining parts
 • Where should we cut?

DYNAMIC PROGRAMMING APPROACH
• Try all ways of making that cut
 • i.e., try a cut at positions 1, 2, ..., n-1
 • In each case, recurse on two rods [0, i] and [i, n]
• Take the max income over all possibilities (each i / no cut)
 • Max income we can get from the rod size i →
 • Optimal substructure: Max income from two rods wizes i and n-i

Example output: 10

Income p₁ Income(Left) + Income(Right)

Income p₂

Income p₃

Income pₙ

Income pₙ−₁

Income pₙ−₂

Income p₁
Recurrence Relation

- Define $M(k)$ = maximum income for rod of length k
- If we do not cut the rod, max income is p_k
- If we do cut a rod at i
 - max income is $M(i) + M(k-i)$
 - Want to maximize this over all i
 - $max(M(i) + M(k-i))$ for $0 < i < k$
 - $M(k) = max(p_k, max_{1 \leq i \leq k-1}(M(i) + M(k-i)))$

Computing Solutions Bottom-Up

- Recurrence: $M(k) = max(p_k, max_{1 \leq i \leq k-1}(M(i) + M(k-i)))$
- Compute table of solutions: $M[1..n]$
 - Dependencies: entry k depends on
 - $M[i] \rightarrow M[1..(k-1)]$
 - $M[i-1] \rightarrow M[1..(k-1)]$
 - All of these dependencies are $< k$
 - So we can fill in the table entries in order $1..n$.

Input Size

- Unit cost model is appropriate here
- Each element of p takes one word
 - $\Theta(1)$ bits each
- So $\Theta(n)$ words
- Input size $S \in \Theta(n)$

So with runtime $\Theta(n^2) = \Theta(S^2)$, this is a quadratic time algorithm.

Recall $M(k)$ = maximum income for rod of length k

Recurrence: $M(k) = max(p_k, max_{1 \leq i \leq k-1}(M(i) + M(k-i)))$

Input Size

- Unit cost model is appropriate here
- Each element of p takes one word
 - $\Theta(1)$ bits each
- So $\Theta(n)$ words
- Input size $S \in \Theta(n)$

So with runtime $\Theta(n^2) = \Theta(S^2)$, this is a quadratic time algorithm.

Next up...

- DP 0-1 Knapsack and Coin Changing (for all currencies)
- Tables will feature multiple dimensions
 - [Not just a 1D array]
 - Bottom-up filling orders become non-trivial
- We often want to solve optimization problems
 - Arguing that an optimal solution is build from optimal sub-solutions becomes more significant
- Input size calculations become more complex, and runtimes often include multiple variables