CS 341: Algorithms

Lecture 1: Introduction, review of asymptotics

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Staff

Instructors

- Trevor Brown
- Éric Schost (office hours Thursday, 2-3pm)

ISC

• Sylvie Davies

Electronic communication

Course webpage:

- Course outline
- Lecture slides

Piazza

- Make sure you are signed up using your uwaterloo email address
- http://piazza.com/uwaterloo.ca/fall2024/cs341
- posting solutions to assignments is forbidden

email

• use your uwaterloo address

Assignments, exams, etc

- 4 assignments (10% each)
- Midterm (20%)
 - Monday October 28, 4:30-6:20pm
- **Final** (40%)
 - TBA

References

- Slides
 - posted before the lecture (usually)
- Textbooks
 - Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein [CLRS]
 - Algorithm Design, Kleinberg, Tardos [KT]
 - Algorithms, Dasgupta, Papadimitriou, Vazirani [DPV]

This course

What you should know

- CS240-level data strucures and algorithms
- big-O notation
- maybe a bit of math (matrices, for instance)

What we will do

- a lot of algorithms
- $\bullet\,$ pseudo-code
- proofs for correctness and runtime

What we will not do

• read/write code in class

Tentative syllabus

- divide-and-conquer, master theorem
- greedy algorithms
- dynamic programming
- breadth-first and depth-first search
- shortest paths in graphs
- flows and cuts
- NP-completeness

Cost of algorithms

Inputs

- parameterized by an integer n, called the size
- e.g., length of an array that we want to work with

$$T(I)$$
 = runtime on input I runtime of a particular instance $T(n)$ = max I of size n $T(I)$ worst-case runtime $T_{avg}(n) = \frac{\sum_{I \text{ of size } n} T(I)}{\text{number of inputs of size } I}$ average runtime, not used much in this course

Remark: we will sometimes use more than one parameter

- numbers of rows and columns in a matrix
- vertices and edges in a graph

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

big-O.

1. we say that $f(n) \in O(g(n))$ if there exist C > 0 and n_0 , such that for $n \ge n_0$, $f(n) \le Cg(n)$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

$\mathbf{big}\text{-}\Omega\textbf{.}$

```
1. we say that f(n) \in \Omega(g(n)) if
there exist C > 0 and n_0 such that for n \ge n_0, f(n) \ge Cg(n)
```

2. equivalent to $g(n) \in O(f(n))$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

Θ.

- **1.** we say that $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.
- **2.** in particular true if $\lim_{\infty} f(n)/g(n) = C$ for some $0 < C < \infty$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

little-o.

1. we say that $f(n) \in o(g(n))$ if for all C > 0, there exists n_0 such that for $n \ge n_0$, $f(n) \le Cg(n)$

2. equivalent to $\lim_{n\to\infty} f(n)/g(n) = 0$.

Examples

•
$$n^k + c_{k-1}n^{k-1} + \dots + c_0$$
 is in $\Theta(n^k)$

c_i and k constant!

• $n^{O(1)}$ means (at most) polynomial in n

True/False

 2^{n-1} is in $\Theta(2^n)$

True/False

$$(n-1)!$$
 is in $\Theta(n!)$

Definitions for several parameters

Definitions for several parameters

Consider two functions f(n,m),g(n,m) with values in $\mathbb{R}_{>0}$

Definition

f(n,m) is in O(g(n,m)) if there exist C, n_0, m_0 such that $f(n,m) \leq Cg(n,m)$ for $n \geq n_0$ or $m \geq m_0$ (i.e. finitely many exceptions)

Remark:

- weaker definition: there exist C, n_0, m_0 such that $f(n, m) \leq Cg(n, m)$ for $n \geq n_0$ and $m \geq m_0$
- will not matter too much which one we choose

Rough definition:

- memory locations contain integer words of \boldsymbol{b} bits each
- assume $b \ge \log(n)$ for input size n(an integer M uses $\log |M|/b$ words, integers in $n^{O(1)}$ fit in O(1) words)
- Random Access Memory: can access any memory location at unit cost, basic operations on words have unit costs

Rough definition:

- $\bullet\,$ memory locations contain integer words of b bits each
- assume $b \ge \log(n)$ for input size n

(an integer M uses $\log |M|/b$ words, integers in $n^{O(1)}$ fit in O(1) words)

• Random Access Memory: can access any memory location at unit cost, basic operations on words have unit costs

Sum(A[1..n]) $1. s \leftarrow 0$ 2. for i = 1,...,n $3. s \leftarrow s + A[i]$

Exercise

If all entries of A fit in a word, what is the cost?

Product(A[1..n])1. $s \leftarrow 1$ 2. for $i = 1, \dots, n$ 3. $s \leftarrow s \times A[i]$

Exercise

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm (previous slide)?

Product(A[1..n])1. $s \leftarrow 1$ 2. for $i = 1, \dots, n$ 3. $s \leftarrow s \times A[i]$

Exercise

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm (previous slide)?

More examples

- matrix multiplication algorithms (with word-size inputs) are OK
- other matrix algorithms (Gaussian elimination) need more care
- (weighted) graph algorithms (weights fit in a word) are usually OK

Case study: maximum subarray

Question

Given an array A[1..n], find a contiguous subarray A[i..j] that maximizes the sum $A[i] + \cdots + A[j]$. All entries fit in a word.

Example. Given

$$A = [10, -5, 4, 3, -5, 6, -1, -1]$$

the subarray

$$A[1..6] = [10, -5, 4, 3, -5, 6]$$

has sum $10 + \cdots + 6 = 13$. It is the best we can do.

Convention. We can take j < i, so A[i..j] is empty, and the sum is zero.

Brute force algorithm

BruteForce (<i>A</i>)	
1.	$opt \leftarrow 0$
2.	for $i \leftarrow 1$ to n do
3.	for $j \leftarrow i$ to n do
4.	$\operatorname{sum} \leftarrow 0$
5.	$\mathbf{for} \ k \leftarrow i \ \mathbf{to} \ j \ \mathbf{do}$
6.	$\operatorname{sum} \leftarrow \operatorname{sum} + A[k]$
7.	$\mathbf{if} \ \mathrm{sum} > \mathrm{opt}$
8.	$\mathrm{opt} \gets \mathrm{sum}$
9.	$\mathbf{return} \ \mathrm{opt}$

Brute force algorithm

BruteForce(A)opt $\leftarrow 0$ 1. for $i \leftarrow 1$ to n do 2.3. for $j \leftarrow i$ to n do sum $\leftarrow 0$ 4. 5.for $k \leftarrow i$ to j do $\operatorname{sum} \leftarrow \operatorname{sum} + A[k]$ 6. 7. if sum > opt 8. opt \leftarrow sum 9. return opt

Runtime: $\Theta(n^3)$

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

```
BetterBruteForce(A)
            opt \leftarrow 0
1.
      for i \leftarrow 1 to n do
2.
3.
      \operatorname{sum} \leftarrow 0
      \begin{aligned} \mathbf{for} \ j \leftarrow i \ \mathbf{to} \ n \ \mathbf{do} \\ \mathrm{sum} \leftarrow \mathrm{sum} + A[j] \end{aligned} 
4.
5.
                              if sum > opt
6.
7.
                                      opt \leftarrow sum
8.
            return opt
```

Runtime: $\Theta(n^2)$

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- **3.** or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- 3. or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2+1] + \dots + A[j]$$

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- **3.** or contains both A[n/2] and A[n/2+1] (cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2+1] + \dots + A[j]$$

more abstractly: F(i, j) = f(i) + g(j), for i in $1, \ldots, n/2$ and j in $n/2 + 1, \ldots, n$ To maximize F(i, j), maximize f(i) and g(j) independently.

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- **3.** or contains both A[n/2] and A[n/2+1] (cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2+1] + \dots + A[j]$$

more abstractly: F(i, j) = f(i) + g(j), for i in $1, \ldots, n/2$ and j in $n/2 + 1, \ldots, n$ To maximize F(i, j), maximize f(i) and g(j) independently.

Maximizing half-sums

MaximizeLowerHalf (A)1. $opt \leftarrow A[n/2]$ 2. $sum \leftarrow A[n/2]$ 3. for $i = n/2 - 1, \dots, 1$ do4. $sum \leftarrow sum + A[i]$ 5. if sum > opt6. $opt \leftarrow sum$ 7. return opt

Runtime: $\Theta(n)$

Maximizing half-sums

MaximizeLowerHalf(A)1. $opt \leftarrow A[n/2]$ 2. $sum \leftarrow A[n/2]$ 3. for $i = n/2 - 1, \dots, 1$ do4. $sum \leftarrow sum + A[i]$ 5. if sum > opt6. $opt \leftarrow sum$ 7. return opt

Runtime: $\Theta(n)$

MaximizeUpperHalf(*A*) 1. . . .

Runtime: $\Theta(n)$

Main algorithm

DivideAndConquer(A[1..n])

- 1. **if** n = 1 **return** $\max(A[1], 0)$
- 2. $opt_{lo} \leftarrow DivideAndConquer(A[1..n/2])$
- 3. $\operatorname{opt}_{\operatorname{hi}} \leftarrow \mathsf{DivideAndConquer}(A[n/2+1..n])$
- 4. $opt_{middle} \leftarrow MaximizeLowerHalf(A) + MaximizeUpperHalf(A)$
- 5. **return** $\max(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Main algorithm

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Proof: same as MergeSort. Details in next module.

Idea: solve the problem in subarrays A[1..j] of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of A[1..n-1],
- **2.** or contains A[n]

(cases mutually exclusive!)

Idea: solve the problem in subarrays A[1..j] of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of A[1..n-1],
- **2.** or contains A[n]

(cases mutually exclusive!)

Translation: write $M(j) = \max$ sum for subarrays of A[1..j]. Then

$$M(n) = \max(M(n-1), \overline{M}(n))$$

with $\overline{M}(j) = \max$ sum for subarrays of A[1..j], that include j.

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains A[n]

- **1.** is of the form A[i..n-1,n], for some $i \leq n-1$
- **2.** or is exactly [A[n]]

(cases mutually exclusive)

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains A[n]

- **1.** is of the form A[i..n-1,n], for some $i \leq n-1$
- **2.** or is exactly [A[n]]

(cases mutually exclusive)

Translation: $\overline{M}(n) = \max(\overline{M}(n-1) + A[n], A[n]) = A[n] + \max(\overline{M}(n-1), 0)$

Can eliminate recursive calls, and write as a loop.

1. $\overline{M} \leftarrow A[1]$ 2. **for** i = 2, ..., n **do** 3. $\overline{M} \leftarrow A[i] + \max(\overline{M}, 0)$

Main algorithm (time permitting)

Runtime: $\Theta(n)$