
CS 341: Algorithms

Lecture 1: Introduction, review of asymptotics

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 23

Staff

Instructors
• Trevor Brown
• Éric Schost (office hours Thursday, 2-3pm)

ISC
• Sylvie Davies

2 / 23

Electronic communication

Course webpage:
• Course outline
• Lecture slides

Piazza
• Make sure you are signed up using your uwaterloo email address
• http://piazza.com/uwaterloo.ca/fall2024/cs341
• posting solutions to assignments is forbidden

email
• use your uwaterloo address

3 / 23

http://piazza.com/uwaterloo.ca/fall2024/cs341

Assignments, exams, etc

• 4 assignments (10% each)

• Midterm (20%)
• Monday October 28, 4:30-6:20pm

• Final (40%)
• TBA

4 / 23

References

• Slides
• posted before the lecture (usually)

• Textbooks
• Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein [CLRS]
• Algorithm Design, Kleinberg, Tardos [KT]
• Algorithms, Dasgupta, Papadimitriou, Vazirani [DPV]

5 / 23

This course

What you should know
• CS240-level data strucures and algorithms
• big-O notation
• maybe a bit of math (matrices, for instance)

What we will do
• a lot of algorithms
• pseudo-code
• proofs for correctness and runtime

What we will not do
• read/write code in class

6 / 23

Tentative syllabus

• divide-and-conquer, master theorem
• greedy algorithms
• dynamic programming
• breadth-first and depth-first search
• shortest paths in graphs
• flows and cuts
• NP-completeness

7 / 23

Cost of algorithms
Inputs
• parameterized by an integer n, called the size
• e.g., length of an array that we want to work with

T (I) = runtime on input I runtime of a particular instance

T (n) = maxI of size n T (I) worst-case runtime

Tavg(n) =
∑

I of size n
T (I)

number of inputs of size I average runtime, not used much in this course

Remark: we will sometimes use more than one parameter
• numbers of rows and columns in a matrix
• vertices and edges in a graph

8 / 23

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

big-O.
1. we say that f(n) ∈ O(g(n)) if

there exist C > 0 and n0, such that for n ≥ n0, f(n) ≤ Cg(n)

2g(n)

f(n)

g(n)

n

9 / 23

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

big-Ω.
1. we say that f(n) ∈ Ω(g(n)) if

there exist C > 0 and n0 such that for n ≥ n0, f(n) ≥ Cg(n)

2. equivalent to g(n) ∈ O(f(n))

1
2g(n)

f(n)

g(n)

n

9 / 23

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

Θ.
1. we say that f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

2. in particular true if lim∞ f(n)/g(n) = C for some 0 < C <∞

1
2g(n)

f(n)

g(n)

n

2g(n)

9 / 23

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

little-o.
1. we say that f(n) ∈ o(g(n)) if

for all C > 0, there exists n0 such that for n ≥ n0, f(n) ≤ Cg(n)

2. equivalent to limn→∞ f(n)/g(n) = 0.

n

f(n)

g(n) 1
2g(n)

1
4g(n)

9 / 23

Examples

• nk + ck−1nk−1 + · · ·+ c0 is in Θ(nk) ci and k constant!

• nO(1) means (at most) polynomial in n

True/False

2n−1 is in Θ(2n)

True/False

(n− 1)! is in Θ(n!)

10 / 23

Definitions for several parameters

11 / 23

Definitions for several parameters

Consider two functions f(n, m), g(n, m) with values in R>0

Definition

f(n, m) is in O(g(n, m)) if there exist C, n0, m0 such that
f(n, m) ≤ Cg(n, m) for n ≥ n0 or m ≥ m0 (i.e. finitely many exceptions)

Remark:
• weaker definition: there exist C, n0, m0 such that f(n, m) ≤ Cg(n, m) for n ≥ n0 and

m ≥ m0

• will not matter too much which one we choose

12 / 23

Computational model: word RAM
Rough definition:
• memory locations contain integer words of b bits each
• assume b ≥ log (n) for input size n

(an integer M uses log |M |/b words, integers in nO(1) fit in O(1) words)
• Random Access Memory: can access any memory location at unit cost, basic operations

on words have unit costs

Sum(A[1..n])
1. s← 0
2. for i = 1, . . . , n
3. s← s + A[i]

Exercise

If all entries of A fit in a word, what is the cost?

13 / 23

Computational model: word RAM
Rough definition:
• memory locations contain integer words of b bits each
• assume b ≥ log (n) for input size n

(an integer M uses log |M |/b words, integers in nO(1) fit in O(1) words)
• Random Access Memory: can access any memory location at unit cost, basic operations

on words have unit costs

Sum(A[1..n])
1. s← 0
2. for i = 1, . . . , n
3. s← s + A[i]

Exercise

If all entries of A fit in a word, what is the cost?

13 / 23

Computational model: word RAM
Product(A[1..n])
1. s← 1
2. for i = 1, . . . , n
3. s← s×A[i]

Exercise

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm
(previous slide)?

More examples
• matrix multiplication algorithms (with word-size inputs) are OK
• other matrix algorithms (Gaussian elimination) need more care
• (weighted) graph algorithms (weights fit in a word) are usually OK

14 / 23

Computational model: word RAM
Product(A[1..n])
1. s← 1
2. for i = 1, . . . , n
3. s← s×A[i]

Exercise

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm
(previous slide)?

More examples
• matrix multiplication algorithms (with word-size inputs) are OK
• other matrix algorithms (Gaussian elimination) need more care
• (weighted) graph algorithms (weights fit in a word) are usually OK

14 / 23

Case study: maximum subarray

Question

Given an array A[1..n], find a contiguous subarray A[i..j] that maximizes the sum
A[i] + · · ·+ A[j]. All entries fit in a word.

Example. Given
A = [10,−5, 4, 3,−5, 6,−1,−1]

the subarray
A[1..6] = [10,−5, 4, 3,−5, 6]

has sum 10 + · · ·+ 6 = 13. It is the best we can do.

Convention. We can take j < i, so A[i..j] is empty, and the sum is zero.

15 / 23

Brute force algorithm
BruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← sum + A[k]
7. if sum > opt
8. opt← sum
9. return opt

Runtime: Θ(n3)

16 / 23

Brute force algorithm
BruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← sum + A[k]
7. if sum > opt
8. opt← sum
9. return opt

Runtime: Θ(n3)

16 / 23

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

BetterBruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. sum← 0
4. for j ← i to n do
5. sum← sum + A[j]
6. if sum > opt
7. opt← sum
8. return opt

17 / 23

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

BetterBruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. sum← 0
4. for j ← i to n do
5. sum← sum + A[j]
6. if sum > opt
7. opt← sum
8. return opt

Runtime: Θ(n2)

17 / 23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

18 / 23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

18 / 23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

18 / 23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

18 / 23

Maximizing half-sums
MaximizeLowerHalf(A)
1. opt← A[n/2]
2. sum← A[n/2]
3. for i = n/2− 1, . . . , 1 do
4. sum← sum + A[i]
5. if sum > opt
6. opt← sum
7. return opt

Runtime: Θ(n)

MaximizeUpperHalf(A)
1. . . .

Runtime: Θ(n)

19 / 23

Maximizing half-sums
MaximizeLowerHalf(A)
1. opt← A[n/2]
2. sum← A[n/2]
3. for i = n/2− 1, . . . , 1 do
4. sum← sum + A[i]
5. if sum > opt
6. opt← sum
7. return opt

Runtime: Θ(n)

MaximizeUpperHalf(A)
1. . . .

Runtime: Θ(n)
19 / 23

Main algorithm

DivideAndConquer(A[1..n])
1. if n = 1 return max(A[1], 0)
2. optlo ← DivideAndConquer(A[1..n/2])
3. opthi ← DivideAndConquer(A[n/2 + 1..n])
4. optmiddle ← MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
5. return max(optlo, opthi, optmiddle)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))

Proof: same as MergeSort. Details in next module.

20 / 23

Main algorithm

DivideAndConquer(A[1..n])
1. if n = 1 return max(A[1], 0)
2. optlo ← DivideAndConquer(A[1..n/2])
3. opthi ← DivideAndConquer(A[n/2 + 1..n])
4. optmiddle ← MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
5. return max(optlo, opthi, optmiddle)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))

Proof: same as MergeSort. Details in next module.

20 / 23

Dynamic programming (time permitting)

Idea: solve the problem in subarrays A[1..j] of sizes 1, . . . , n. The optimal subarray
1. is either a subarray of A[1..n− 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M(j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n− 1), M(n))

with M(j) = max sum for subarrays of A[1..j], that include j.

21 / 23

Dynamic programming (time permitting)

Idea: solve the problem in subarrays A[1..j] of sizes 1, . . . , n. The optimal subarray
1. is either a subarray of A[1..n− 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M(j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n− 1), M(n))

with M(j) = max sum for subarrays of A[1..j], that include j.

21 / 23

Dynamic programming (time permitting)

How can we compute M(1), . . . , M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n− 1, n], for some i ≤ n− 1
2. or is exactly [A[n]]

(cases mutually exclusive)

Translation: M(n) = max(M(n− 1) + A[n], A[n]) = A[n] + max(M(n− 1), 0)

Can eliminate recursive calls, and write as a loop.

1. M ← A[1]
2. for i = 2, . . . , n do
3. M ← A[i] + max(M, 0)

22 / 23

Dynamic programming (time permitting)

How can we compute M(1), . . . , M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n− 1, n], for some i ≤ n− 1
2. or is exactly [A[n]]

(cases mutually exclusive)

Translation: M(n) = max(M(n− 1) + A[n], A[n]) = A[n] + max(M(n− 1), 0)

Can eliminate recursive calls, and write as a loop.

1. M ← A[1]
2. for i = 2, . . . , n do
3. M ← A[i] + max(M, 0)

22 / 23

Main algorithm (time permitting)

DynamicProgramming(A)
1. M ← A[1]
2. M ← max(M, 0)
3. for i = 2, . . . , n do
4. M ← A[i] + max(M, 0)
5. M ← max(M, M)
6. return M

Runtime: Θ(n)

23 / 23

