CS 341: Algorithms

Lecture 1: Introduction, review of asymptotics

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Staff

Instructors

- Trevor Brown
- Éric Schost (office hours Thursday, 2-3pm)

ISC

• Sylvie Davies

Electronic communication

Course webpage:

- Course outline
- Lecture slides

Piazza

- Make sure you are signed up using your uwaterloo email address
- <http://piazza.com/uwaterloo.ca/fall2024/cs341>
- posting solutions to assignments is forbidden

email

• use your uwaterloo address

Assignments, exams, etc

- **4 assignments** (10% each)
- **Midterm** (20%)
	- Monday October 28, 4:30-6:20pm
- **Final** (40%)
	- TBA

References

• **Slides**

• posted before the lecture (usually)

• **Textbooks**

- **Introduction to Algorithms**, Cormen, Leiserson, Rivest, Stein [CLRS]
- **Algorithm Design**, Kleinberg, Tardos [KT]
- **Algorithms**, Dasgupta, Papadimitriou, Vazirani [DPV]

This course

What you should know

- CS240-level data strucures and algorithms
- big-O notation
- maybe a bit of math (matrices, for instance)

What we will do

- a lot of algorithms
- pseudo-code
- proofs for correctness and runtime

What we will not do

• read/write code in class

Tentative syllabus

- divide-and-conquer, master theorem
- greedy algorithms
- dynamic programming
- breadth-first and depth-first search
- shortest paths in graphs
- flows and cuts
- NP-completeness

Cost of algorithms

Inputs

- parameterized by an integer *n*, called the **size**
- e.g., length of an array that we want to work with

$$
T(I) = \text{ runtime on input } I
$$
 runtime of a particular instance

$$
T(n) = \max_{I \text{ of size } n} T(I)
$$
worst-case runtime

$$
T_{\text{avg}}(n) = \frac{\sum_{I \text{ of size } n} T(I)}{\text{number of inputs of size } I}
$$
average runtime, not used much in this course

Remark: we will sometimes use more than one parameter

- numbers of rows and columns in a matrix
- vertices and edges in a graph

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

big-O.

1. we say that $f(n) \in O(g(n))$ if there exist $C > 0$ and n_0 , such that for $n \ge n_0$, $f(n) \le Cq(n)$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

big-Ω**.**

- **1.** we say that $f(n) \in \Omega(g(n))$ if there exist $C > 0$ and n_0 such that for $n > n_0$, $f(n) > Cq(n)$
- **2.** equivalent to $g(n) \in O(f(n))$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

Θ**.**

- **1.** we say that $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.
- **2.** in particular true if $\lim_{x \to a} f(n)/g(n) = C$ for some $0 < C < \infty$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

little-o.

1. we say that $f(n) \in o(g(n))$ if for all $C > 0$, there exists n_0 such that for $n > n_0$, $f(n) < Cq(n)$

2. equivalent to $\lim_{n\to\infty} f(n)/g(n) = 0$.

Examples

•
$$
n^k + c_{k-1}n^{k-1} + \cdots + c_0
$$
 is in $\Theta(n^k)$

c_i and k constant!

 \bullet $n^{O(1)}$ means (at most) polynomial in n

True/False

 2^{n-1} is in $\Theta(2^n)$

True/False

$$
(n-1)!
$$
 is in $\Theta(n!)$

Definitions for several parameters

Definitions for several parameters

Consider two functions $f(n, m), g(n, m)$ with values in $\mathbb{R}_{>0}$

Definition

 $f(n, m)$ is in $O(g(n, m))$ if there exist C, n_0, m_0 such that $f(n, m) \leq Cg(n, m)$ for $n \geq n_0$ or $m \geq m_0$ (i.e. finitely many exceptions)

Remark:

- weaker definition: there exist C, n_0, m_0 such that $f(n, m) \leq Cg(n, m)$ for $n \geq n_0$ and $m \geq m_0$
- will not matter too much which one we choose

Rough definition:

- memory locations contain **integer words** of *b* **bits** each
- assume $b > log(n)$ for input size *n* (an integer *M* uses $\log |M|/b$ words, integers in $n^{O(1)}$ fit in $O(1)$ words)
- Random Access Memory: can **access any memory location** at unit cost, **basic operations on words** have unit costs

Rough definition:

- memory locations contain **integer words** of *b* **bits** each
- assume $b > \log(n)$ for input size *n*

(an integer *M* uses $\log |M|/b$ words, integers in $n^{O(1)}$ fit in $O(1)$ words)

• Random Access Memory: can **access any memory location** at unit cost, **basic operations on words** have unit costs

> **Sum**(*A*[1*..n*]) 1. $s \leftarrow 0$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s + A[i]$

Exercise

If all entries of *A* fit in a word, what is the cost?

Product(*A*[1*..n*]) 1. $s \leftarrow 1$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s \times A[i]$

Exercise

All entries of *A* fit in a word. Does this have the same runtime as the Sum algorithm (previous slide)?

Product(*A*[1*..n*]) 1. $s \leftarrow 1$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s \times A[i]$

Exercise

All entries of *A* fit in a word. Does this have the same runtime as the Sum algorithm (previous slide)?

More examples

- matrix multiplication algorithms (with word-size inputs) are OK
- other matrix algorithms (Gaussian elimination) need more care
- (weighted) graph algorithms (weights fit in a word) are usually OK

Case study: maximum subarray

Question

Given an array $A[1..n]$, find a contiguous subarray $A[i..j]$ that maximizes the sum $A[i] + \cdots + A[j]$. All entries fit in a word.

Example. Given

$$
A = [10, -5, 4, 3, -5, 6, -1, -1]
$$

the subarray

$$
A[1..6]=[10,-5,4,3,-5,6] \quad
$$

has sum $10 + \cdots + 6 = 13$. It is the best we can do.

Convention. We can take $j < i$, so $A[i..j]$ is empty, and the sum is zero.

Brute force algorithm

```
BruteForce(A)
1. opt \leftarrow 02. for i \leftarrow 1 to n do
3. for j \leftarrow i to n do
4. \text{sum} \leftarrow 05. for k \leftarrow i to j do
6. \text{sum} \leftarrow \text{sum} + A[k]7. if sum > opt
8. \qquad \qquad \text{opt} \leftarrow \text{sum}9. return opt
```
Brute force algorithm

BruteForce(*A*) 1. $opt \leftarrow 0$ 2. **for** $i \leftarrow 1$ **to** *n* **do** 3. **for** $j \leftarrow i$ **to** *n* **do** 4. $\text{sum} \leftarrow 0$ 5. **for** $k \leftarrow i$ **to** j **do** 6. $\text{sum} \leftarrow \text{sum} + A[k]$ 7. **if** sum *>* opt 8. $\qquad \qquad \text{opt} \leftarrow \text{sum}$ 9. **return** opt

Runtime: $\Theta(n^3)$

Improved brute force algorithm

Idea: we recompute the same sum many times in the *j* loop.

Improved brute force algorithm

Idea: we recompute the same sum many times in the *j* loop.

```
BetterBruteForce(A)
1. opt \leftarrow 02. for i \leftarrow 1 to n do<br>3. sum \leftarrow 0sum \leftarrow 04. for j \leftarrow i to n do
5. sum \leftarrow sum + A[j]6. if sum > opt
7. \qquad \qquad \text{opt} \leftarrow \text{sum}8. return opt
```
 R untime: $\Theta(n^2)$

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

Idea: solve the problem twice in size $n/2$ (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[j] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[j]$

Idea: solve the problem twice in size $n/2$ (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[i] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[i]$

more abstractly: $F(i, j) = f(i) + g(j)$, for *i* in $1, \ldots, n/2$ and *j* in $n/2 + 1, \ldots, n$ To maximize $F(i, j)$, maximize $f(i)$ and $g(j)$ independently.

Idea: solve the problem twice in size $n/2$ (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[i] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[i]$

more abstractly: $F(i, j) = f(i) + g(j)$, for *i* in $1, \ldots, n/2$ and *j* in $n/2 + 1, \ldots, n$ To maximize $F(i, j)$, maximize $f(i)$ and $g(j)$ independently.

Maximizing half-sums

MaximizeLowerHalf(*A*) 1. $\qquad \text{opt} \leftarrow A[n/2]$ 2. $\text{sum} \leftarrow A[n/2]$ 3. **for** $i = n/2 - 1, ..., 1$ **do** 4. $\text{sum} \leftarrow \text{sum} + A[i]$ 5. **if** sum $>$ opt 6. opt \leftarrow sum 7. **return** opt

Runtime: **Θ(***n***)**

Maximizing half-sums

MaximizeLowerHalf(*A*) 1. $\qquad \text{opt} \leftarrow A[n/2]$ 2. $\text{sum} \leftarrow A[n/2]$ 3. **for** $i = n/2 - 1, ..., 1$ **do** 4. $\text{sum} \leftarrow \text{sum} + A[i]$ 5. **if** sum *>* opt 6. opt \leftarrow sum 7. **return** opt

Runtime: **Θ(***n***)**

MaximizeUpperHalf(*A*) 1. *. . .*

Runtime: **Θ(***n***)**

Main algorithm

DivideAndConquer(*A*[1*..n*])

- 1. **if** $n = 1$ **return** $max(A[1], 0)$
- 2. $\text{opt}_{\text{lo}} \leftarrow \text{DivideAndConquer}(A[1..n/2])$
3. $\text{opt}_{\text{lo}} \leftarrow \text{DivideAndConquer}(A[n/2+1])$
- 3. opt_{hi} ← DivideAndConquer $(A[n/2+1..n])$
4. opt_{middle} ← MaximizeLowerHalf (A) + Max
- $\mathrm{opt}_{\mathrm{middle}} \leftarrow \mathsf{MaximizeLowerHalf}(A) + \mathsf{MaximizeUpperHalf}(A)$
- 5. **return** max $(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Main algorithm

DivideAndConquer(*A*[1*..n*]) if $n = 1$ **return** $\max(A[1], 0)$ 2. $\qquad \text{opt}_{\text{lo}} \leftarrow \text{DivideAndConquer}(A[1..n/2])$ 3. $\qquad \text{opt}_{\text{hi}} \leftarrow \text{DivideAndConquer}(A[n/2+1..n])$ $4.$ opt_{middle} ← MaximizeLowerHalf(A) + MaximizeUpperHalf(A) $\textbf{return } \max(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Proof: same as MergeSort. Details in next module.

Idea: solve the problem in subarrays $A[1..j]$ of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of $A[1..n-1]$,
- **2.** or contains $A[n]$

(cases mutually exclusive!)

Idea: solve the problem in subarrays $A[1..j]$ of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of $A[1..n-1]$,
- **2.** or contains *A*[*n*]

(cases mutually exclusive!)

Translation: write $M(j) = \max$ sum for subarrays of $A[1..j]$. Then

$$
M(n) = \max(M(n-1), \overline{M}(n))
$$

with $\overline{M}(j) = \text{max sum}$ for subarrays of $A[1..j]$, that include *j*.

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains *A*[*n*]

- 1. is of the form $A[i..n-1,n]$, for some $i \leq n-1$
- **2.** or is exactly $[A[n]]$

(cases mutually exclusive)

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains *A*[*n*]

- 1. is of the form $A[i..n-1,n]$, for some $i \leq n-1$
- **2.** or is exactly $[A[n]]$

(cases mutually exclusive)

Translation:
$$
\overline{M}(n) = \max(\overline{M}(n-1) + A[n], A[n]) = A[n] + \max(\overline{M}(n-1), 0)
$$

Can eliminate recursive calls, and write as a loop.

Main algorithm (time permitting)

DynamicProgramming(*A*) 1. $M \leftarrow A[1]$ 2. $M \leftarrow \max(M, 0)$ 3. **for** $i = 2, ..., n$ **do** 4. $M \leftarrow A[i] + \max(M, 0)$ 5. $M \leftarrow \max(M, M)$ 6. **return** *M*

Runtime: $\Theta(n)$