CS 341: Algorithms

Lecture 2: Solving recurrences

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

From exact to sloppy recurrences

Overview

Consider a recursive algorithm Algo.

Assumption: for an input size $n > 1$, Algo does

- *a* recursive calls, in size either $|\boldsymbol{n}/b|$ or $\lceil \boldsymbol{n}/b \rceil$ ($a > 0$ and $b > 1$, constants)
- between $c'n^y$ and cn^y extra operations. (*c* and *c*' nonzero constants, *y* constant)

Claim

Solving the sloppy recurrence $T(n) = aT(n/b) + cn^y$ for powers of *b* gives a valid Θ-bound for best and worst-case runtimes.

Overview

Consider a recursive algorithm Algo.

Assumption: for an input size $n > 1$, Algo does

- *a* recursive calls, in size either $|\boldsymbol{n}/b|$ or $\lceil \boldsymbol{n}/b \rceil$ ($a > 0$ and $b > 1$, constants)
- between $c'n^y$ and cn^y extra operations. (*c* and *c*' nonzero constants, *y* constant)

Claim

Solving the sloppy recurrence $T(n) = aT(n/b) + cn^y$ for powers of *b* gives a valid Θ-bound for best and worst-case runtimes.

Remark 1: if we only know that we do at most cn^y extra operations, we only get a big-O.

Remark 2: to be concrete, we'll do the proof for mergesort.

• one recursive call with $\lfloor n/2 \rfloor$, the other with $\lfloor n/2 \rfloor$, and roughly *n* extra operations.

• so
$$
a = b = 2
$$
 and $y = 1$

Best and worst-case recurrence relations

Let $T^w(n)$, $T^b(n)$ be the **worst case**, resp. **best case** in size *n*.

Worst-case recurrence: $T^w(1) = d$ and

$$
T^{w}(n) \le T^{w}\left(\left\lceil \frac{n}{2} \right\rceil\right) + T^{w}\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn \quad \text{if } n > 1
$$

Best-case recurrence: $T^b(1) = d'$ and

$$
T^{b}(n) \ge T^{b}\left(\left\lceil \frac{n}{2}\right\rceil\right) + T^{b}\left(\left\lfloor \frac{n}{2}\right\rfloor\right) + c'n \quad \text{if } n > 1
$$

Best and worst-case recurrence relations

Let $T^w(n)$, $T^b(n)$ be the **worst case**, resp. **best case** in size *n*.

Worst-case recurrence: $T^w(1) = d$ and

$$
T^{w}(n) \le T^{w}\left(\left\lceil \frac{n}{2} \right\rceil\right) + T^{w}\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn \quad \text{if } n > 1
$$

Best-case recurrence: $T^b(1) = d'$ and

$$
T^{b}(n) \ge T^{b}\left(\left\lceil \frac{n}{2}\right\rceil\right) + T^{b}\left(\left\lfloor \frac{n}{2}\right\rfloor\right) + c'n \quad \text{if } n > 1
$$

Remark: could be possible to write = instead or \leq or \geq , but harder to prove

Worst-case analysis

Use an equal sign: define *T* by

$$
T(1) = d, \qquad T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn \quad \text{if } n > 1
$$

Exercise

 $T^w(n) \leq T(n)$ and $T(n)$ increasing (easy induction)

Remark: same thing can be done for $T^b(n)$.

Worst-case analysis (cont.)

Sloppy recurrence:

$$
t(1) = d,
$$
 $t(n) = 2t\left(\frac{n}{2}\right) + cn$ if $n > 1$

Observations

- this only defines *t*(*n*) for powers of 2.
- $T(2^k) = t(2^k)$ for any *k*
- *T* is increasing so $T(n) \leq T(\text{next power of 2}) = t(\text{next power of 2})$

Conclusion:

- enough to analyze $t(n)$, *n* a power of 2
- we'll do it using the recursion tree

The mergesort recursion tree

Total: $t(n) = cn \log_2(n) + dn$ for *n* a power of 2.

Consequences

- \bullet $T(n) \in O(n \log(n))$
- \bullet $T^w(n) \in O(n \log(n))$

The mergesort recursion tree

Total: $t(n) = cn \log_2(n) + dn$ for *n* a power of 2.

Consequences

- \bullet $T(n) \in O(n \log(n))$
- \bullet $T^w(n) \in O(n \log(n))$

Remark: same approach proves $T^b(n) \in \Omega(n \log(n))$, and so

 $T^b(n), T^w(n) \in \Theta(n \log(n))$

The master theorem

The master theorem

Solves many recurrence relations coming from divide-and-conquer algorithms.

Suppose that $a > 1$ and $b > 1$. Consider the recurrence

$$
T(n) = aT\left(\frac{n}{b}\right) + cn^y \quad n > 1
$$

Let

$$
x = \log_b a \quad (\text{so } a = b^x).
$$

Then

$$
T(n) \in \begin{cases} \Theta(n^y) & \text{if } y > x \quad \text{(root heavy)} \\ \Theta(n^y \log n) & \text{if } y = x \quad \text{(balanced)} \\ \Theta(n^x) & \text{if } y < x \quad \text{(leaf heavy)} \end{cases}
$$

We do the proof for *n* a power of *b*; result true for $n \in \mathbb{R}_{\geq 0}$.

Recursion tree

Suppose that $n = b^j$, $a \ge 1$, $b \ge 2$ are integers and

$$
T(n) = aT\left(\frac{n}{b}\right) + cn^y, \qquad T(1) = d.
$$

Recursion tree

Suppose that $n = b^j$, $a \ge 1$, $b \ge 2$ are integers and

$$
T(n) = aT\left(\frac{n}{b}\right) + cn^y, \qquad T(1) = d.
$$

 $10/15$

Breakdown of the cost

Suppose that $a \geq 1$ and $b \geq 2$ are integers and

$$
T(n) = a T\left(\frac{n}{b}\right) + c n^y, \qquad T(1) = d.
$$

Let $n = b^j$.

Computing *T*(*n*)

Total:

$$
T(n) = d a^{j} + c n^{y} \sum_{i=0}^{j-1} \left(\frac{a}{b^{y}}\right)^{i} = d n^{x} + c n^{y} \sum_{i=0}^{j-1} \left(\frac{a}{b^{y}}\right)^{i}.
$$

Proof: $a = b^x$ and $n = b^j$, so $a^j = (b^x)^j = (b^j)^x = n^x$.

Computing *T*(*n*)

Total:

$$
T(n) = d a^{j} + c n^{y} \sum_{i=0}^{j-1} \left(\frac{a}{b^{y}}\right)^{i} = d n^{x} + c n^{y} \sum_{i=0}^{j-1} \left(\frac{a}{b^{y}}\right)^{i}.
$$

Proof: $a = b^x$ and $n = b^j$, so $a^j = (b^x)^j = (b^j)^x = n^x$.

Observation: geometric sum with ratio $r = \frac{a}{b^y} = b^{x-y}$:

- if $r < 1 \iff x < y$: $\sum r^i \in \Theta(1)$, so $T(n) \in \Theta(n^y)$
- if $r = 1 \iff x = y$: $\sum r^i \in \Theta(\log n)$, so $T(n) \in \Theta(n^y \log n)$
- if $r > 1 \iff x > y$: $\sum r^i \in \Theta(r^j)$, so $T(n) \in \Theta(n^x)$

Proof (last item):

$$
r^j = \frac{a^j}{b^{yj}} = \frac{n^x}{n^y}
$$

 $T(n) = 4T(n/2) + n$ multiplying polynomials • $a = 4, b = 2, y = 1$ so $x = \log_b a = 2$ and $T(n) = \Theta(n^2)$

 $T(n) = 4T(n/2) + n$ multiplying polynomials • $a = 4, b = 2, y = 1$ so $x = \log_b a = 2$ and $T(n) = \Theta(n^2)$

 $T(n) = 2T(n/2) + n^2$ • $a = 2, b = 2, y = 2$ so $x = \log_b a = 1$ and $T(n) = \Theta(n^2)$

 $T(n) = 4T(n/2) + n$ multiplying polynomials • $a = 4, b = 2, y = 1$ so $x = \log_b a = 2$ and $T(n) = \Theta(n^2)$ $T(n) = 2T(n/2) + n^2$

• $a = 2, b = 2, y = 2$ so $x = \log_b a = 1$ and $T(n) = \Theta(n^2)$

 $T(n) = 2T(n/4) + 1$ kd-trees • $a = 2$, $b = 4$, $y = 0$ so $x = \log_b a = 1/2$ and $T(n) = \Theta(\sqrt{n})$

 $T(n) = T(n/2) + 1$ binary search • $a = 1, b = 2, y = 0$ so $x = \log_b a = 0$ and $T(n) = \Theta(\log n)$

 $T(n) = T(n/2) + 1$ binary search • $a = 1, b = 2, y = 0$ so $x = \log_b a = 0$ and $T(n) = \Theta(\log n)$

 $T(n) = T(n/2) + n$ amortized analysis of dynamic arrays • $a = 1, b = 2, y = 1$ so $x = \log_b a = 0$ and $T(n) = \Theta(n)$

 $T(n) = T(n/2) + 1$ binary search • $a = 1, b = 2, y = 0$ so $x = \log_b a = 0$ and $T(n) = \Theta(\log n)$

 $T(n) = T(n/2) + n$ amortized analysis of dynamic arrays • $a = 1, b = 2, y = 1$ so $x = \log_b a = 0$ and $T(n) = \Theta(n)$

 $T(n) = T(n/2)$

• does not fit in our framework, but obvious

 $T(n) = T(n/2) + 1$ binary search • $a = 1, b = 2, y = 0$ so $x = \log_b a = 0$ and $T(n) = \Theta(\log n)$

 $T(n) = T(n/2) + n$ amortized analysis of dynamic arrays • $a = 1, b = 2, y = 1$ so $x = \log_b a = 0$ and $T(n) = \Theta(n)$

 $T(n) = T(n/2)$

• does not fit in our framework, but obvious

 $T(n) = 2T(n/2) + n \log(n)$

• does not fit in our framework, have to redo the recursion tree analysis

Consider $T(n) = 2T(n/2) + n$, $T(1) = 0$, *n* power of 2.

Consider $T(n) = 2T(n/2) + n$, $T(1) = 0$, *n* power of 2.

Guess: $T(n) \leq n$. Proof by induction? Assume $T(n/2) \leq n/2$.

$$
T(n) = 2T(n/2) + n \leq 2(n/2) + n = 2n \nleq n
$$

Consider $T(n) = 2T(n/2) + n$, $T(1) = 0$, *n* power of 2.

Guess: $T(n) \leq n$. Proof by induction? Assume $T(n/2) \leq n/2$.

$$
T(n) = 2T(n/2) + n \le 2(n/2) + n = 2n \nleq n
$$

Guess: $T(n) \leq kn$, *k* TBD? Assume $T(n/2) \leq kn/2$.

$$
T(n) = 2T(n/2) + n \le 2(kn/2) + n = kn + n \nleq kn
$$

Consider $T(n) = 2T(n/2) + n$, $T(1) = 0$, *n* power of 2.

Guess: $T(n) \leq n$. Proof by induction? Assume $T(n/2) \leq n/2$.

$$
T(n) = 2T(n/2) + n \le 2(n/2) + n = 2n \nleq n
$$

Guess: $T(n) \leq kn$, k TBD? Assume $T(n/2) \leq kn/2$.

$$
T(n) = 2T(n/2) + n \le 2(kn/2) + n = kn + n \nleq kn
$$

Guess: $T(n) \leq kn \log_2 n$, *k* TBD? Assume $T(n/2) \leq kn/2 \log_2(n/2)$.

$$
T(n) = 2T(n/2) + n \le 2(kn/2 \log_2(n/2)) + n = kn \log_2 n - kn + n
$$

proof by induction OK if $k \geq 1$.

Consider $T(n) = 2T(n/2) + n$, $T(1) = 0$, *n* power of 2.

Guess: $T(n) \leq n$. Proof by induction? Assume $T(n/2) \leq n/2$.

$$
T(n) = 2T(n/2) + n \le 2(n/2) + n = 2n \nleq n
$$

Guess: $T(n) \leq kn$, k TBD? Assume $T(n/2) \leq kn/2$.

$$
T(n) = 2T(n/2) + n \le 2(kn/2) + n = kn + n \nleq kn
$$

Guess: $T(n) \leq kn \log_2 n$, *k* TBD? Assume $T(n/2) \leq kn/2 \log_2(n/2)$.

$$
T(n) = 2T(n/2) + n \le 2(kn/2 \log_2(n/2)) + n = kn \log_2 n - kn + n
$$

proof by induction OK if $k \geq 1$.

Remark: usually harder to prove $T(n) = \cdots$