
CS 341: Algorithms

Lecture 2: Solving recurrences

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 15

From exact to sloppy recurrences

2 / 15

Overview
Consider a recursive algorithm Algo.

Assumption: for an input size n > 1, Algo does
• a recursive calls, in size either ⌊n/b⌋ or ⌈n/b⌉ (a > 0 and b > 1, constants)
• between c′ny and cny extra operations. (c and c′ nonzero constants, y constant)

Claim

Solving the sloppy recurrence T (n) = aT (n/b) + cny for powers of b gives a valid
Θ-bound for best and worst-case runtimes.

Remark 1: if we only know that we do at most cny extra operations, we only get a big-O.

Remark 2: to be concrete, we’ll do the proof for mergesort.
• one recursive call with ⌊n/2⌋, the other with ⌈n/2⌉, and roughly n extra operations.
• so a = b = 2 and y = 1

3 / 15

Overview
Consider a recursive algorithm Algo.

Assumption: for an input size n > 1, Algo does
• a recursive calls, in size either ⌊n/b⌋ or ⌈n/b⌉ (a > 0 and b > 1, constants)
• between c′ny and cny extra operations. (c and c′ nonzero constants, y constant)

Claim

Solving the sloppy recurrence T (n) = aT (n/b) + cny for powers of b gives a valid
Θ-bound for best and worst-case runtimes.

Remark 1: if we only know that we do at most cny extra operations, we only get a big-O.

Remark 2: to be concrete, we’ll do the proof for mergesort.
• one recursive call with ⌊n/2⌋, the other with ⌈n/2⌉, and roughly n extra operations.
• so a = b = 2 and y = 1

3 / 15

Best and worst-case recurrence relations

Let T w(n), T b(n) be the worst case, resp. best case in size n.

Worst-case recurrence: T w(1) = d and

T w(n) ≤ T w
(⌈

n

2

⌉)
+ T w

(⌊
n

2

⌋)
+ cn if n > 1

Best-case recurrence: T b(1) = d′ and

T b(n) ≥ T b
(⌈

n

2

⌉)
+ T b

(⌊
n

2

⌋)
+ c′n if n > 1

Remark: could be possible to write = instead or ≤ or ≥, but harder to prove

4 / 15

Best and worst-case recurrence relations

Let T w(n), T b(n) be the worst case, resp. best case in size n.

Worst-case recurrence: T w(1) = d and

T w(n) ≤ T w
(⌈

n

2

⌉)
+ T w

(⌊
n

2

⌋)
+ cn if n > 1

Best-case recurrence: T b(1) = d′ and

T b(n) ≥ T b
(⌈

n

2

⌉)
+ T b

(⌊
n

2

⌋)
+ c′n if n > 1

Remark: could be possible to write = instead or ≤ or ≥, but harder to prove

4 / 15

Worst-case analysis

Use an equal sign: define T by

T (1) = d, T (n) = T

(⌈
n

2

⌉)
+ T

(⌊
n

2

⌋)
+ cn if n > 1

Exercise

T w(n) ≤ T (n) and T (n) increasing (easy induction)

Remark: same thing can be done for T b(n).

5 / 15

Worst-case analysis (cont.)

Sloppy recurrence:

t(1) = d, t(n) = 2t

(
n

2

)
+ cn if n > 1

Observations
• this only defines t(n) for powers of 2.
• T (2k) = t(2k) for any k

• T is increasing so T (n) ≤ T (next power of 2) = t(next power of 2)

Conclusion:
• enough to analyze t(n), n a power of 2
• we’ll do it using the recursion tree

6 / 15

The mergesort recursion tree

log2(n) + 1

size n

size n/2

· · ·

size 1

cn

cn

· · ·

dn

•

•

•

••

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Total: t(n) = cn log2(n) + dn for n a power of 2.
Consequences

• T (n) ∈ O(n log(n))
• T w(n) ∈ O(n log(n))

Remark: same approach proves T b(n) ∈ Ω(n log(n)), and so
T b(n), T w(n) ∈ Θ(n log(n))

7 / 15

The mergesort recursion tree

log2(n) + 1

size n

size n/2

· · ·

size 1

cn

cn

· · ·

dn

•

•

•

••

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Total: t(n) = cn log2(n) + dn for n a power of 2.
Consequences

• T (n) ∈ O(n log(n))
• T w(n) ∈ O(n log(n))

Remark: same approach proves T b(n) ∈ Ω(n log(n)), and so
T b(n), T w(n) ∈ Θ(n log(n))

7 / 15

The master theorem

8 / 15

The master theorem
Solves many recurrence relations coming from divide-and-conquer algorithms.

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T

(
n

b

)
+ cny n > 1

Let
x = logb a (so a = bx).

Then

T (n) ∈

Θ(ny) if y > x (root heavy)
Θ(ny log n) if y = x (balanced)
Θ(nx) if y < x (leaf heavy)

We do the proof for n a power of b; result true for n ∈ R≥0.
9 / 15

Recursion tree
Suppose that n = bj , a ≥ 1, b ≥ 2 are integers and

T (n) = a T

(
n

b

)
+ c ny, T (1) = d.

logb n

size n

size n
b

size n
b2

size n
bj

a branches

a a

a a

cny cny

ca(nb)
y

ca2(n
b2)

y

caj−1(n
bj−1)

y

daj

Total: daj + cny ∑j−1
i=0 (

a
by)

i

10 / 15

Recursion tree
Suppose that n = bj , a ≥ 1, b ≥ 2 are integers and

T (n) = a T

(
n

b

)
+ c ny, T (1) = d.

logb n

size n

size n
b

size n
b2

size n
bj

a branches

a a

a a

cny cny

ca(nb)
y

ca2(n
b2)

y

caj−1(n
bj−1)

y

daj

Total: daj + cny ∑j−1
i=0 (

a
by)

i 10 / 15

Breakdown of the cost

Suppose that a ≥ 1 and b ≥ 2 are integers and

T (n) = a T

(
n

b

)
+ c ny, T (1) = d.

Let n = bj .

size of subproblem # nodes cost/node total cost
n = bj 1 c ny c ny

n/b = bj−1 a c (n/b)y c a (n/b)y

n/b2 = bj−2 a2 c (n/b2)y c a2 (n/b2)y

...
...

...
...

n/bj−1 = b aj−1 c (n/bj−1)y c aj−1 (n/bj−1)y

n/bj = 1 aj d d aj

11 / 15

Computing T (n)
Total:

T (n) = d aj + c ny
j−1∑
i=0

(
a

by

)i

= dnx + cny
j−1∑
i=0

(
a

by

)i

.

Proof: a = bx and n = bj , so aj = (bx)j = (bj)x = nx.

Observation: geometric sum with ratio r = a
by = bx−y:

• if r < 1 ⇐⇒ x < y:
∑

ri ∈ Θ(1), so T (n) ∈ Θ(ny)
• if r = 1 ⇐⇒ x = y:

∑
ri ∈ Θ(log n), so T (n) ∈ Θ(ny log n)

• if r > 1 ⇐⇒ x > y:
∑

ri ∈ Θ(rj), so T (n) ∈ Θ(nx)

Proof (last item):

rj = aj

byj
= nx

ny

12 / 15

Computing T (n)
Total:

T (n) = d aj + c ny
j−1∑
i=0

(
a

by

)i

= dnx + cny
j−1∑
i=0

(
a

by

)i

.

Proof: a = bx and n = bj , so aj = (bx)j = (bj)x = nx.

Observation: geometric sum with ratio r = a
by = bx−y:

• if r < 1 ⇐⇒ x < y:
∑

ri ∈ Θ(1), so T (n) ∈ Θ(ny)
• if r = 1 ⇐⇒ x = y:

∑
ri ∈ Θ(log n), so T (n) ∈ Θ(ny log n)

• if r > 1 ⇐⇒ x > y:
∑

ri ∈ Θ(rj), so T (n) ∈ Θ(nx)

Proof (last item):

rj = aj

byj
= nx

ny

12 / 15

Examples

T (n) = 4T (n/2) + n multiplying polynomials
• a = 4, b = 2, y = 1 so x = logb a = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, y = 2 so x = logb a = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees
• a = 2, b = 4, y = 0 so x = logb a = 1/2 and T (n) = Θ(

√
n)

13 / 15

Examples

T (n) = 4T (n/2) + n multiplying polynomials
• a = 4, b = 2, y = 1 so x = logb a = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, y = 2 so x = logb a = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees
• a = 2, b = 4, y = 0 so x = logb a = 1/2 and T (n) = Θ(

√
n)

13 / 15

Examples

T (n) = 4T (n/2) + n multiplying polynomials
• a = 4, b = 2, y = 1 so x = logb a = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, y = 2 so x = logb a = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees
• a = 2, b = 4, y = 0 so x = logb a = 1/2 and T (n) = Θ(

√
n)

13 / 15

Examples

T (n) = T (n/2) + 1 binary search
• a = 1, b = 2, y = 0 so x = logb a = 0 and T (n) = Θ(log n)

T (n) = T (n/2) + n amortized analysis of dynamic arrays
• a = 1, b = 2, y = 1 so x = logb a = 0 and T (n) = Θ(n)

T (n) = T (n/2)
• does not fit in our framework, but obvious

T (n) = 2T (n/2) + n log (n)
• does not fit in our framework, have to redo the recursion tree analysis

14 / 15

Examples

T (n) = T (n/2) + 1 binary search
• a = 1, b = 2, y = 0 so x = logb a = 0 and T (n) = Θ(log n)

T (n) = T (n/2) + n amortized analysis of dynamic arrays
• a = 1, b = 2, y = 1 so x = logb a = 0 and T (n) = Θ(n)

T (n) = T (n/2)
• does not fit in our framework, but obvious

T (n) = 2T (n/2) + n log (n)
• does not fit in our framework, have to redo the recursion tree analysis

14 / 15

Examples

T (n) = T (n/2) + 1 binary search
• a = 1, b = 2, y = 0 so x = logb a = 0 and T (n) = Θ(log n)

T (n) = T (n/2) + n amortized analysis of dynamic arrays
• a = 1, b = 2, y = 1 so x = logb a = 0 and T (n) = Θ(n)

T (n) = T (n/2)
• does not fit in our framework, but obvious

T (n) = 2T (n/2) + n log (n)
• does not fit in our framework, have to redo the recursion tree analysis

14 / 15

Examples

T (n) = T (n/2) + 1 binary search
• a = 1, b = 2, y = 0 so x = logb a = 0 and T (n) = Θ(log n)

T (n) = T (n/2) + n amortized analysis of dynamic arrays
• a = 1, b = 2, y = 1 so x = logb a = 0 and T (n) = Θ(n)

T (n) = T (n/2)
• does not fit in our framework, but obvious

T (n) = 2T (n/2) + n log (n)
• does not fit in our framework, have to redo the recursion tree analysis

14 / 15

Alternative: guess and prove
Consider T (n) = 2T (n/2) + n, T (1) = 0, n power of 2.

Guess: T (n) ≤ n. Proof by induction? Assume T (n/2) ≤ n/2.

T (n) = 2T (n/2) + n ≤ 2(n/2) + n = 2n ≰ n

Guess: T (n) ≤ kn, k TBD? Assume T (n/2) ≤ kn/2.

T (n) = 2T (n/2) + n ≤ 2(kn/2) + n = kn + n ≰ kn

Guess: T (n) ≤ kn log2 n, k TBD? Assume T (n/2) ≤ kn/2 log2(n/2).

T (n) = 2T (n/2) + n ≤ 2(kn/2 log2(n/2)) + n = kn log2 n − kn + n

proof by induction OK if k ≥ 1.

Remark: usually harder to prove T (n) = · · ·

15 / 15

Alternative: guess and prove
Consider T (n) = 2T (n/2) + n, T (1) = 0, n power of 2.

Guess: T (n) ≤ n. Proof by induction? Assume T (n/2) ≤ n/2.

T (n) = 2T (n/2) + n ≤ 2(n/2) + n = 2n ≰ n

Guess: T (n) ≤ kn, k TBD? Assume T (n/2) ≤ kn/2.

T (n) = 2T (n/2) + n ≤ 2(kn/2) + n = kn + n ≰ kn

Guess: T (n) ≤ kn log2 n, k TBD? Assume T (n/2) ≤ kn/2 log2(n/2).

T (n) = 2T (n/2) + n ≤ 2(kn/2 log2(n/2)) + n = kn log2 n − kn + n

proof by induction OK if k ≥ 1.

Remark: usually harder to prove T (n) = · · ·

15 / 15

Alternative: guess and prove
Consider T (n) = 2T (n/2) + n, T (1) = 0, n power of 2.

Guess: T (n) ≤ n. Proof by induction? Assume T (n/2) ≤ n/2.

T (n) = 2T (n/2) + n ≤ 2(n/2) + n = 2n ≰ n

Guess: T (n) ≤ kn, k TBD? Assume T (n/2) ≤ kn/2.

T (n) = 2T (n/2) + n ≤ 2(kn/2) + n = kn + n ≰ kn

Guess: T (n) ≤ kn log2 n, k TBD? Assume T (n/2) ≤ kn/2 log2(n/2).

T (n) = 2T (n/2) + n ≤ 2(kn/2 log2(n/2)) + n = kn log2 n − kn + n

proof by induction OK if k ≥ 1.

Remark: usually harder to prove T (n) = · · ·

15 / 15

Alternative: guess and prove
Consider T (n) = 2T (n/2) + n, T (1) = 0, n power of 2.

Guess: T (n) ≤ n. Proof by induction? Assume T (n/2) ≤ n/2.

T (n) = 2T (n/2) + n ≤ 2(n/2) + n = 2n ≰ n

Guess: T (n) ≤ kn, k TBD? Assume T (n/2) ≤ kn/2.

T (n) = 2T (n/2) + n ≤ 2(kn/2) + n = kn + n ≰ kn

Guess: T (n) ≤ kn log2 n, k TBD? Assume T (n/2) ≤ kn/2 log2(n/2).

T (n) = 2T (n/2) + n ≤ 2(kn/2 log2(n/2)) + n = kn log2 n − kn + n

proof by induction OK if k ≥ 1.

Remark: usually harder to prove T (n) = · · ·

15 / 15

Alternative: guess and prove
Consider T (n) = 2T (n/2) + n, T (1) = 0, n power of 2.

Guess: T (n) ≤ n. Proof by induction? Assume T (n/2) ≤ n/2.

T (n) = 2T (n/2) + n ≤ 2(n/2) + n = 2n ≰ n

Guess: T (n) ≤ kn, k TBD? Assume T (n/2) ≤ kn/2.

T (n) = 2T (n/2) + n ≤ 2(kn/2) + n = kn + n ≰ kn

Guess: T (n) ≤ kn log2 n, k TBD? Assume T (n/2) ≤ kn/2 log2(n/2).

T (n) = 2T (n/2) + n ≤ 2(kn/2 log2(n/2)) + n = kn log2 n − kn + n

proof by induction OK if k ≥ 1.

Remark: usually harder to prove T (n) = · · ·
15 / 15

