CS 341: Algorithms

Lecture 3: Divide and conquer

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

The framework

To solve a problem in size n:

Divide

- break the input into **smaller** problems
- ideally few such problems, all of size n/b for some constant b

Conquer

• solve these subproblems recursively

Recombine

• deduce the solution of the main problem from the subproblems

When should you use this?

- original problem nicely decomposable (not much overlap in the subproblems)
- combining solutions is not too costly
- subproblems are not overly unbalanced

Polynomial and matrix multiplication

Multiplying polynomials

Goal: given $F = f_0 + \dots + f_{n-1}x^{n-1}$ and $G = g_0 + \dots + g_{n-1}x^{n-1}$, compute $H = FG = f_0g_0 + (f_0g_1 + f_1g_0)x + \dots + f_{n-1}g_{n-1}x^{2n-2}$

Remark: assume all f_i and g_i fit in one word. Then, input and output size $\Theta(n)$, easy algorithm in $\Theta(n^2)$.

1.	for $i = 0, \ldots, n-1$ do
2.	for $j = 0, \ldots, n-1$ do
3.	$h_{i+j} = h_{i+j} + f_i g_j$

ldea: write $F = F_0 + F_1 x^{n/2}$, $G = G_0 + G_1 x^{n/2}$. Then $H = F_0 G_0 + (F_0 G_1 + F_1 G_0) x^{n/2} + F_1 G_1 x^n$

Idea: write
$$F = F_0 + F_1 x^{n/2}$$
, $G = G_0 + G_1 x^{n/2}$. Then
 $H = F_0 G_0 + (F_0 G_1 + F_1 G_0) x^{n/2} + F_1 G_1 x^n$

Analysis:

- 4 recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0G_1 + F_1G_0$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions to handle overlaps

(Sloppy) recurrence: T(n) = 4T(n/2) + cn

• a = 4, b = 2, y = 1 so $T(n) \in \Theta(n^2)$

Not better than the naive algorithm. We do the same operations.

Idea: write
$$F = F_0 + F_1 x^{n/2}$$
, $G = G_0 + G_1 x^{n/2}$. Then
 $H = F_0 G_0 + (F_0 G_1 + F_1 G_0) x^{n/2} + F_1 G_1 x^n$

Analysis:

- 4 recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0G_1 + F_1G_0$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions to handle overlaps

(Sloppy) recurrence: T(n) = 4T(n/2) + cn

• a = 4, b = 2, y = 1 so $T(n) \in \Theta(n^2)$

Not better than the naive algorithm. We do the same operations.

Exercise

Use one multiplication of polynomials to get $F_0G_1 + F_1G_0$, starting from F_0 , F_1 , G_0 , G_1 , F_0G_0 , F_1G_1

Karatsuba's algorithm

Idea: use the identity

 $(F_0 + F_1 x^{n/2})(G_0 + G_1 x^{n/2}) = F_0 G_0 + ((F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1) x^{n/2} + F_1 G_1 x^n$

Karatsuba's algorithm

Idea: use the identity

 $(F_0 + F_1 x^{n/2})(G_0 + G_1 x^{n/2}) = F_0 G_0 + ((F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1) x^{n/2} + F_1 G_1 x^{n/2}$

Analysis:

- **3** recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0 + F_1$ and $G_0 + G_1$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions and subtractions to combine the results

Recurrence: T(n) = 3T(n/2) + cn• a = 3, b = 2, y = 1 so $T(n) \in \Theta(n^{\log_2 3})$ $\log_2 3 = 1.58...$

Karatsuba's algorithm

Idea: use the identity

 $(F_0 + F_1 x^{n/2})(G_0 + G_1 x^{n/2}) = F_0 G_0 + ((F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1) x^{n/2} + F_1 G_1 x^{n/2}$

Analysis:

- **3** recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0 + F_1$ and $G_0 + G_1$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions and subtractions to combine the results

Recurrence: T(n) = 3T(n/2) + cn• a = 3, b = 2, y = 1 so $T(n) \in \Theta(n^{\log_2 3})$ $\log_2 3 = 1.58...$

Remark: key idea = a formula for degree-1 polynomials that does 3 multiplications

Toom-Cook and FFT

Took-Cook:

- a family of algorithms based on similar expressions as Karatsuba
- for $k \ge 2$, 2k 1 recursive calls in size n/k
- so $T(n) \in \Theta(n^{\log_k(2k-1)})$
- gets as close to exponent 1 as we want (but very slowly)

FFT:

- if we use complex coefficients, FFT can be used to multiply polynomials
- FFT follows the same recurrence as merge sort, T(n) = 2T(n/2) + cn
- so we can multiply polynomials in $\Theta(n \log(n))$ ops over $\mathbb C$

Multiplying matrices

Goal: given $A = [a_{i,j}]_{1 \le i,j \le n}$ and $B = [b_{j,k}]_{1 \le j,k \le n}$ compute C = AB

Remark: input and output size $\Theta(n^2)$, easy algorithm in $\Theta(n^3)$

1.	for $i = 1, \ldots, n$ do
2.	for $j = 1, \dots, n$ do
2. 3.	$\mathbf{for}k=1,\ldots,n\mathbf{do}$
4.	$c_{i,k} = c_{i,k} + a_{i,j} b_{j,k}$

Setup: write

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

with all $A_{i,k}, B_{i,j}$ of size $n/2 \times n/2$. Then

$$C = \begin{pmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{pmatrix}$$

Naively: 8 recursive calls in size $n/2 + \Theta(n^2)$ additions $\implies T(n) \in \Theta(n^3)$

Goal: find a better formula for 2×2 matrices

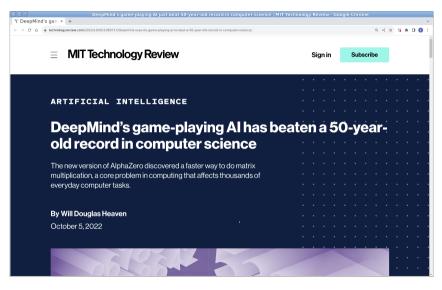
Strassen's algorithm

Compute

Analysis: 7 recursive calls in size $n/2 + \Theta(n^2)$ additions $\implies T(n) \in \Theta(n^{\log_2(7)})$ $\log_2(7) = 2.80 \dots$

10/19

Faster algorithms: AI to the rescue



Beyond Strassen

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$ (we always have $k > \ell^2$, so no log)

Beyond Strassen

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$ (we always have $k > \ell^2$, so no log)

A challenge: find best k for small values of ℓ

- SAT solving, gradient descent, ...
- AlphaTensor found some better values, but none beats Strassen (except for matrices over {0,1}, with operations modulo 2)

Beyond Strassen

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$ (we always have $k > \ell^2$, so no log)

A challenge: find best k for small values of ℓ

- SAT solving, gradient descent, ...
- AlphaTensor found some better values, but none beats Strassen (except for matrices over {0,1}, with operations modulo 2)

Best exponent to date (using more than just divide and conquer)

- $O(n^{2.37188})$, improves from previous record $O(n^{2.37286})$
- galactic algorithms

Counting inversions

Counting inversions

Goal: given an unsorted array A[1..n], find the number of **inversions** in it. **Def:** (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2,3), (2,5), (2,8), (4,5), (4,8), (6,7), (6,8), (7,8)

Remark 1. we show the indices where inversions occur

Counting inversions

Goal: given an unsorted array A[1..n], find the number of **inversions** in it. **Def:** (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2,3), (2,5), (2,8), (4,5), (4,8), (6,7), (6,8), (7,8)

Remark 1. we show the indices where inversions occur

Remark 2. easy algorithm (two nested loops) in $\Theta(n^2)$

Remark 3. to do better than n^2 , we cannot **list** all inversions

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

ldea

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of **transverse** inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• $c_{\ell} = 1$ (2,3) • $c_r = 3$ (6,7), (6,8), (7,8) • $c_t = 4$ (2,5), (2,8), (4,5), (4,8)

Transverse inversions

Goal: how many pairs (i, j) with $i \leq n/2, j > n/2, A[i] > A[j]$?

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

 $c_t = \#i$'s greater than 3 + #i's greater than 8 + #i's greater than 7 + #i's greater than 4

or

 $c_t = \#j$'s less than 1 + #j's less than 5 + #j's less than 2 + #j's less than 6

Transverse inversions

Goal: how many pairs (i, j) with $i \leq n/2, j > n/2, A[i] > A[j]$?

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

 $c_t = \#i$'s greater than 3 + #i's greater than 8 + #i's greater than 7 + #i's greater than 4or

 $c_t = \#j$'s less than 1 + #j's less than 5 + #j's less than 2 + #j's less than 6

Observation: this number does not change if both sides are **sorted**, so assume that left and right are sorted after the recursive calls.

Example: With the same input, we get

 $\left[\mathbf{1,2,5,6,3,4,7,8}\right]$

 $c_t = \#j$'s less than 1 + #j's less than 2 + #j's less than 5 + #j's less than 6

16/19

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.

- this is $O(\log(n))$ per *i*, so total $O(n \log(n))$
- after that, another $\Theta(n \log(n))$ for sorting
- recurrence: $T(n) = 2T(n/2) + cn\log(n)$
- gives $T(n) \in \Theta(n \log^2(n))$

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.

- this is $O(\log(n))$ per *i*, so total $O(n \log(n))$
- after that, another $\Theta(n \log(n))$ for sorting
- recurrence: $T(n) = 2T(n/2) + cn\log(n)$
- gives $T(n) \in \Theta(n \log^2(n))$

Proof:

$$T(n) = 2T(n/2) + n \log(n)$$

= $4T(n/4) + n \log(n/2) + n \log(n)$
= $\dots = n(\log(n) + \log(n/2) + \dots + \log(2))$
 $\leq n \log^2(n)$

Exercise

Prove $T(n) \in \Omega(n \log^2(n))$

Option 2: enhance mergesort

Observation: if left and right side are sorted, no need to sort everything, just **merge Goal:** find c_t during merge.

 $\begin{array}{ll} \operatorname{Merge}(A[1..n]) \text{ (both halves of } A \text{ assumed sorted)} \\ 1. & \operatorname{copy} A \text{ into a new array } S \\ 2. & i = 1; \ j = n/2 + 1; \\ 3. & \operatorname{for} (k \leftarrow 1; k \leq n; k++) \operatorname{do} \\ 4. & \operatorname{if} (i > n/2) \ A[k] \leftarrow S[j++] \\ 5. & \operatorname{else if} (j > n) \ A[k] \leftarrow S[i++] \\ 6. & \operatorname{else if} (S[i] < S[j]) \ A[k] \leftarrow S[i++] \\ 7. & \operatorname{else} A[k] \leftarrow S[j++] \end{array}$

When we insert S[i] back in A, need to count how many j's have been processed already

 $\begin{array}{lll} \textbf{EnhancedMerge}(A[1..n]) \text{ (both halves of } A \text{ assumed sorted)} \\ 1. & \operatorname{copy} A \text{ into a new array } S; \ c = 0 \\ 2. & i = 1; \ j = n/2 + 1; \\ 3. & \textbf{for } (k \leftarrow 1; \ k \leq n; \ k++) \ \textbf{do} \\ 4. & \textbf{if } (i > n/2) \ A[k] \leftarrow S[j++] \\ 5. & \textbf{else if } (j > n) \ A[k] \leftarrow S[i++]; \ c = c + n/2 \\ 6. & \textbf{else if } (S[i] < S[j]) \ A[k] \leftarrow S[i++]; \ c = c + j - (n/2 + 1) \\ 7. & \textbf{else } A[k] \leftarrow S[j++] \end{array}$

 $\begin{array}{ll} \textbf{EnhancedMerge}(A[1..n]) \text{ (both halves of } A \text{ assumed sorted)} \\ 1. & \text{copy } A \text{ into a new array } S; \ c=0 \\ 2. & i=1; \ j=n/2+1; \\ 3. & \textbf{for } (k \leftarrow 1; \ k \leq n; \ k++) \textbf{ do} \\ 4. & \textbf{if } (i > n/2) \ A[k] \leftarrow S[j++] \\ 5. & \textbf{else if } (j > n) \ A[k] \leftarrow S[i++]; \ c=c+n/2 \\ 6. & \textbf{else if } (S[i] < S[j]) \ A[k] \leftarrow S[i++]; \ c=c+j-(n/2+1) \\ 7. & \textbf{else } A[k] \leftarrow S[j++] \end{array}$

Example: with [1, 2, 5, 6, 3, 4, 7, 8]

- when we insert 1 back into A, j = 5 so c = c + 0
- when we insert 2 back into A, j = 5 so c = c + 0
- when we insert 5 back into A, j = 7 so c = c + 2
- when we insert 6 back into A, j = 7 so c = c + 2

Enhanced merge is still $\Theta(n)$ so total remains $\Theta(n \log(n))$.