CS 341: Algorithms

Lecture 4: Divide and conquer, continued

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Closest pairs

Closest pairs

Goal: given *n* points (x_i, y_i) in the plane, find a pair (i, j) that minimizes the distance

$$
d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
$$

Equivalent to minimize

$$
d_{i,j}^2 = (x_i - x_j)^2 + (y_i - y_j)^2
$$

Assumption

all x_i 's distinct

Divide-and-conquer

Idea: separate the points into two halves *L, R* at the median *x*-value

- $L = \text{all } n/2 \text{ points with } x \leq x_{\text{median}}$
- $R = \text{all } n/2 \text{ points with } x > x_{\text{median}}$
- find the closest pairs in both *L* and *R* recursively
- the closest pair is either **between points in** *L* (done), or **between points in** *R* (done), or **transverse** (one in *L*, one in *R*)

Finding the shortest transverse distance

- Set $\delta = \min(\delta_L, \delta_R)$
	- We only need to consider transverse pairs (P, Q) with $dist(P, R) \leq \delta$ and dist $(Q, L) < \delta$.

Finding the shortest transverse distance

Set $\delta = \min(\delta_L, \delta_R)$

• For any $P = (x_P, y_P)$, enough to look at points with $y_P \leq y \leq y_P + \delta$

Finding the shortest transverse distance

Set $\delta = \min(\delta_L, \delta_R)$

• For any $P = (x_P, y_P)$, enough to look at points with $y_P \leq y < y_P + \delta$

So it is enough to check distances $d(P,Q)$ for Q in the rectangle.

How many points in the rectangle?

Claim

There are at most **8** points from our initial set (including *P*) in the rectangle.

How many points in the rectangle?

Claim

There are at most **8** points from our initial set (including *P*) in the rectangle.

Proof. Cover the rectangle with **8** squares of side length $\delta/2$

• they overlap along lines, but it's OK

How many points in the rectangle?

Claim

There are at most **8** points from our initial set (including *P*) in the rectangle.

Proof. Cover the rectangle with **8** squares of side length *δ/*2

- they overlap along lines, but it's OK
- a square on the left contains **at most one point from** *L*
- a square on the right contains **at most one point from** *R*

Consequence: at most 8 points in the range $y_P \leq y \leq y_P + \delta$

Data structures and runtime

Initialization: sort the points **twice**, with respect to *x* and to *y*. One-time cost $O(n \log(n))$, before recursive calls cf kd-trees

Recursive calls. Enter with two lists (points sorted in *x* and in *y*).

- finding the *x*-median is easy **Θ(1)**
- for the next recursive calls, split the sorted lists **Θ(***n***)**
- remove the points at distance $\geq \delta$ from the *x*-splitting line $\Theta(n)$
- inspect all remaining points *P* in increasing *y*-order. For each *P*, compute the distance to the points with $y_P \leq y \leq y_P + \delta$ and keep the min. At most 8 points per *P*. $\Theta(n)$

Runtime: $T(n) = 2T(n/2) + cn$ so $T(n) \in \Theta(n \log(n))$

Linear time median

Beyond the master theorem: median of medians

Median: given $A[0..n-1]$, find the entry that would be at index $\lfloor n/2 \rfloor$ **if** *A* was sorted

Selection: given $A[0..n-1]$ and k in $\{0,\ldots,n-1\}$, find the entry that would be at index *k* **if** *A* **was sorted**

Known results: sorting *A* in $\Theta(n \log(n))$, or a simple randomized algorithm in expected time $\Theta(n)$

The selection algorithm

partition(*A, p*)**:**

- reorders *A* so that $A = \{ \leq p, A[i] = p, \geq p \}$
- if all entries distinct, $A = \{ \langle p, A[i] = p, \rangle | p \}$

Goal: find a pivot such that both i and $n - i - 1$ are not too large

Median of medians

Sketch of the algorithm:

- divide *A* into $n/5$ groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group $\Theta(n)$
- pivot *p* is the median of $[m_1, \ldots, m_{n/5}]$ *T*(*n/*⁵)

Claim

With this choice of *p*, the indices *i* and $n - i - 1$ are at most $7n/10$

Median of medians

Sketch of the algorithm:

- divide *A* into $n/5$ groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group $\Theta(n)$
- pivot *p* is the median of $[m_1, \ldots, m_{n/5}]$ *T*(*n/*5)

Claim

With this choice of *p*, the indices *i* and $n - i - 1$ are at most $7n/10$

Proof

- **half** of the m_i 's are greater than or equal to *p n/***10**
- for each m_i , there are **3** elements in G_i greater than or equal to m_i
- so **at least 3***n/***10** elements greater than *p*
- so **at most 7***n/***10** elements less than *p*
- so *i* is at most $7n/10$. Same thing for $n-i-1$

Median of medians

Sketch of the algorithm:

- divide *A* into $n/5$ groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group $\Theta(n)$
- pivot *p* is the median of $[m_1, \ldots, m_{n/5}]$ *T*(*n/*5)

Claim

With this choice of *p*, the indices *i* and $n - i - 1$ are at most $7n/10$

Consequence: (sloppy) recurrence

$$
T(n) = T(n/5) + T(7n/10) + cn
$$

Claim

This gives worst-case $T^w(n) \in \Theta(n)$ ($\Omega(n)$ clear)

The recursion tree for *T*(*n*)

Can prove: enough to analyze the sloppy recurrence, setting $T(n) = 0$ for $n \leq 1$.

Geometric sum of ratio $9/10 < 1$, so $\Theta(n)$.

Final remarks

- **1. Why not median of three?**
	- we do $n/3$ **groups of** 3 and find their medians $m_1, \ldots, m_n/3$ **Θ(***n*)
	- *p* is the median of $[m_1, \ldots, m_{n/3}]$
	- half of the m_i 's are greater than or equal to *p n/***6**
	- in each group, **2** elements greater than or equal to *mⁱ*
	- so overall at least *n/***3** elements greater than or equal to *p*
	- so at most **2***n/***3** elements less than *p*
	- so $i \leq 2n/3$, and $n-1-i \leq 2n/3$

Recurrence: $T(n) = T(n/3) + T(2n/3) + cn$

 $T(n/3)$

Final remarks

- **1. Why not median of three?**
	- we do $n/3$ **groups of** 3 and find their medians $m_1, \ldots, m_n/3$ **Θ(***n*)
	- *p* is the median of $[m_1, \ldots, m_{n/3}]$
	- half of the m_i 's are greater than or equal to *p n/***6**
	- in each group, **2** elements greater than or equal to *mⁱ*
	- so overall at least *n/***3** elements greater than or equal to *p*
	- so at most **2***n/***3** elements less than *p*
	- so $i \leq 2n/3$, and $n-1-i \leq 2n/3$

Recurrence: $T(n) = T(n/3) + T(2n/3) + cn$

2. Handling duplicates

- **option 1.** revisit partition: $\vert \langle p, p_1, \ldots, p_n \rangle \geq p \vert$
- **option 2.** break ties: $A[i] \rightarrow [A[i], i]$

 $T(n/3)$