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Closest pairs

2 / 13



Closest pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that minimizes the distance

di,j =
√

(xi − xj)2 + (yi − yj)2

Equivalent to minimize
d2

i,j = (xi − xj)2 + (yi − yj)2

Assumption

all xi’s distinct
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Divide-and-conquer
Idea: separate the points into two halves L, R at the median x-value
• L = all n/2 points with x ≤ xmedian
• R = all n/2 points with x > xmedian
• find the closest pairs in both L and R recursively
• the closest pair is either between points in L (done), or between points in R (done), or

transverse (one in L, one in R)
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• We only need to consider transverse pairs (P, Q) with dist(P, R) ≤ δ and

dist(Q, L) ≤ δ.
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• For any P = (xP , yP ), enough to look at points with yP ≤ y < yP + δ
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• For any P = (xP , yP ), enough to look at points with yP ≤ y < yP + δ

So it is enough to check distances d(P, Q) for Q in the rectangle.
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How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.
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How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

6 / 13



How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

• a square on the left contains at most one point from L

• a square on the right contains at most one point from R

Consequence: at most 8 points in the range yP ≤ y ≤ yP + δ
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Data structures and runtime

Initialization: sort the points twice, with respect to x and to y.
One-time cost O(n log(n)), before recursive calls cf kd-trees

Recursive calls. Enter with two lists (points sorted in x and in y).
• finding the x-median is easy Θ(1)
• for the next recursive calls, split the sorted lists Θ(n)
• remove the points at distance ≥ δ from the x-splitting line Θ(n)
• inspect all remaining points P in increasing y-order.

For each P , compute the distance to the points with yP ≤ y ≤ yP + δ and keep the
min. At most 8 points per P . Θ(n)

Runtime: T (n) = 2T (n/2) + cn so T (n) ∈ Θ(n log(n))
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Linear time median
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Beyond the master theorem: median of medians

Median: given A[0..n− 1], find the entry that would be at index ⌊n/2⌋ if A was sorted

Selection: given A[0..n− 1] and k in {0, . . . , n− 1}, find the entry that would be at index
k if A was sorted

Known results: sorting A in Θ(n log(n)), or a simple randomized algorithm in expected
time Θ(n)

Assumption

all A[i]’s distinct
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The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p← choose-pivot(A)
2. i← partition(A, p) i is the correct index of p
3. if i = k then
4. return A[i]
5. else if i > k then
6. return quick-select(A[0, 1, . . . , i− 1], k)
7. else if i < k then
8. return quick-select(A[i + 1, i + 2, . . . , n− 1], k − i− 1)

partition(A, p):
• reorders A so that A = [≤ p, A[i] = p, ≥ p]
• if all entries distinct, A = [< p, A[i] = p, > p]

Goal: find a pivot such that both i and n − i − 1 are not too large
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10

Proof
• half of the mi’s are greater than or equal to p n/10
• for each mi, there are 3 elements in Gi greater than or equal to mi

• so at least 3n/10 elements greater than p

• so at most 7n/10 elements less than p

• so i is at most 7n/10. Same thing for n− i− 1
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10

Consequence: (sloppy) recurrence

T (n) = T (n/5) + T (7n/10) + cn

Claim

This gives worst-case T w(n) ∈ Θ(n) (Ω(n) clear)

11 / 13



The recursion tree for T (n)
Can prove: enough to analyze the sloppy recurrence, setting T (n) = 0 for n ≤ 1.
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Geometric sum of ratio 9/10 < 1, so Θ(n).
12 / 13



Final remarks
1. Why not median of three?
• we do n/3 groups of 3 and find their medians m1, . . . , mn/3 Θ(n)
• p is the median of [m1, . . . , mn/3] T (n/3)
• half of the mi’s are greater than or equal to p n/6
• in each group, 2 elements greater than or equal to mi

• so overall at least n/3 elements greater than or equal to p

• so at most 2n/3 elements less than p

• so i ≤ 2n/3, and n − 1 − i ≤ 2n/3
Recurrence: T (n) = T (n/3) + T (2n/3) + cn

2. Handling duplicates
• option 1. revisit partition: [< p, p, . . . , p, > p]
• option 2. break ties: A[i] → [A[i], i]
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