
CS 341: Algorithms

Lecture 4: Divide and conquer, continued

Slides due to Éric Schost and based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2026

1 / 19



Beyond the master theorem

2 / 19



Beyond the master theorem
Some recursive algorithms
• do recursion in uneven sizes (e.g. both n/3 and n/4), . . .
• or in size

√
n, or even log(n), . . .

• or have extra work more complicated than ny

No master theorem covers everything. But recursion trees still work:
• find out how many nodes, of what size, there are at each level
• gives the total work per level
• warning, in case of uneven size recursion, some levels may not be complete
→ not always clear that you get a Θ (example: linear time median, later)

Remark:
• to be 100% clean, we should justify that we can work with sloppy recurrences.
• don’t worry about it; it can be done (but gets more difficult than for merge sort)

3 / 19



Example: “generalized” master theorem

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T

(
n

b

)
+ f(n), T (n) = d (n ≤ 1), inf

n
f(n) > 0

Let x = logb a (so a = bx).

Then T (n) ∈


Θ(f(n)) if f(n) ∈ Ω(nx+ε), for some ε > 0
Θ(nx log n) if f(n) ∈ Θ(nx)
Θ(nx) if f(n) ∈ O(nx−ε), for some ε > 0

Proof: by recursion tree, no details.
Remark: we can either say “for n a power of b” or extend the definition of T to all n ∈ R

4 / 19



Examples and non-examples

T (n) = 3T (n/4) + n log(n).

• x = log4(3) < 1
• f(n) ∈ Ω(n1) = Ω(nx+ε) where ε = 1− x > 0
• so T (n) ∈ Θ(n log(n))

T (n) = 2T (n/2) + n log(n).

• x = log2(2) = 1
• f(n) ∈ Ω(n) implies not case three
• f(n) /∈ Θ(n) implies not case two
• f(n)/nx+ε = log(n)/nε → 0 implies f(n) ∈ o(nx+ε) for all ε > 0
• therefore f(n) /∈ Ω(nx+ε) and not case one
• No case of the master theorem applies

5 / 19



Linear time median

6 / 19



Median of medians

Selection: given A[0..n− 1] and k in {0, . . . , n− 1}, find the entry that would be at index
k if A was sorted

Minimum: select from A[0..n− 1] at index k = 0
Maximum: select from A[0..n− 1] at index k = n− 1

Median: select from A[0..n− 1] at index ⌊n/2⌋

Model: unit cost

Known results: sorting A in Θ(n log(n)), or a simple randomized algorithm in expected
time Θ(n)

7 / 19



The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p← choose-pivot(A)
2. i, j ← partition(A, p)
3. if i ≤ k ≤ j then
4. return p
5. else if k < i then
6. return quick-select(A[0, 1, . . . , i− 1], k)
7. else if j < k then
8. return quick-select(A[j + 1, j + 2, . . . , n− 1], k − j − 1)

partition(A, p):
• reorders A so that [< p, A[i] = p, . . . , A[j] = p, > p] in linear time

Goal: find a pivot such that both i and n − j − 1 are not too large
8 / 19



Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10

9 / 19



Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10

Proof
• half of the mi’s are greater than or equal to p n/10
• for each mi, there are 3 elements in Gi greater than or equal to mi

• so at least 3n/10 elements greater than or equal to p

• so at most 7n/10 elements less than p

• so i is at most 7n/10. Same thing for n− j − 1
9 / 19



Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10

Consequence: (sloppy) recurrence

T (n) = T (n/5) + T (7n/10) + cn

Claim

This gives worst-case T (n) ∈ Θ(n) (Ω(n) clear)

9 / 19



The recursion tree for T (n)
Can prove: we can set T (n) = 0 for n ≤ 1.

n

n/5 7n/10

n/25 7n/50 7n/50 49n/100

• • •

•

• •

•

• •

• • •

•

log10/7(n)

cn

9
10cn(

9
10

)2
cn

<
(

9
10

)i
cn

<
(

9
10

)i+1
cn

<
(

9
10

)i+2
cn

Key point: T (n) < cn × (geometric sum of ratio 9/10 < 1), so T (n) ∈ O(n).
10 / 19



Why not median of three?
• we do n/3 groups of 3 and find their medians m1, . . . , mn/3 Θ(n)
• p is the median of [m1, . . . , mn/3] T (n/3)
• half of the mi’s are greater than or equal to p n/6
• in each group, 2 elements greater than or equal to mi

• so overall at least n/3 elements greater than or equal to p

• so at most 2n/3 elements less than p

• so i ≤ 2n/3, and n − j − 1 ≤ 2n/3

Recurrence: T (n) = T (n/3) + T (2n/3) + cn

Exercise

This gives T (n) ∈ Θ(n log(n))

11 / 19



The recursion tree for T (n)

n

n/3 2n/3

n/9 2n/9 2n/9 4n/9

• • •

•

• •

•

• •

• • •

•

log3/2(n)

log3(n)

cn

cn

cn

< cn

< cn

< cn

Key point: cn log3 ≤ T (n) ≤ cn log3/2(n) so T (n) ∈ Θ(n log n).

12 / 19



Closest pairs
(time permitting)

13 / 19



Closest pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that minimizes the distance

di,j =
√

(xi − xj)2 + (yi − yj)2

Equivalent to minimize
d2

i,j = (xi − xj)2 + (yi − yj)2

Assumption

all xi’s distinct

14 / 19



Divide-and-conquer
Idea: separate the points into two halves L, R at the median x-value
• L = all n/2 points with x ≤ xmedian (no other point on the median line)
• R = all n/2 points with x > xmedian
• find the closest pairs in both L and R recursively
• the closest pair is either between points in L (done), or between points in R (done), or

transverse (one in L, one in R)

δL = 4

δR = 2
√

5

15 / 19



Divide-and-conquer

Familiar pattern . . .

ClosestPair(P )
P : array of points of size n
1. L, R← PartitionByMedianX(P )
2. δL ← ClosestPair(L)
3. δR ← ClosestPair(R)
4. δT ← TransverseClosestPair(L, R) ???
5. return min(δL, δR, δT )

16 / 19



Divide-and-conquer

Idea: We only have to find transverse pairs closer than δ

ClosestPair(P )
P : array of points of size n
1. L, R← PartitionByMedianX(P )
2. δL ← ClosestPair(L)
3. δR ← ClosestPair(R)
4. δ ← min(δL, δR)
5. return TransverseCase(L, R, δ) ???

16 / 19



Finding the shortest transverse distance
Set δ = min(δL, δR)
• only need to consider transverse pairs (P, Q) with dist(P, R) ≤ δ and

dist(Q, L) ≤ δ.

P

δL = 4

δR = 2
√

5

17 / 19



Finding the shortest transverse distance
Set δ = min(δL, δR)
• for any P = (xP , yP ), enough to look at points with yP ≤ y ≤ yP + δ

P

δL = 4

δR = 2
√

5

17 / 19



Finding the shortest transverse distance
Set δ = min(δL, δR)
• for any P = (xP , yP ), enough to look at points with yP ≤ y ≤ yP + δ

So it is enough to check distances d(P, Q) for Q in the rectangle.

P

δL = 4

δR = 2
√

5

17 / 19



How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

18 / 19



How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

P

δL = 4

δR = 2
√

5

18 / 19



How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

• a square on the left contains at most one point from L

• a square on the right contains at most one point from R

Consequence: at most 8 points in the range yP ≤ y ≤ yP + δ

18 / 19



Data structures and runtime
Initialization: sort the points twice, with respect to x and to y.
One-time cost O(n log(n)), before recursive calls cf kd-trees

Main algo: given two arrays representing the same points (Ax sorted in x, Ay sorted in y)
• find the x-median using Ax Θ(1)
• split both Ax and Ay for recursions Θ(n)
• recurse on L and R 2T (n/2)
• remove the points at distance ≥ δ from the x-median line from Ay Θ(n)
• inspect all remaining points P in Ay (=in increasing y-order)

for each P , compute the distance to points Q in Ay with yP ≤ yQ ≤ yP + δ min.
at most 8 points Q need to be checked per P Θ(n)

Runtime: T (n) = 2T (n/2) + cn so T (n) ∈ Θ(n log(n))

19 / 19


