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Beyond the master theorem
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Beyond the master theorem
Some recursive algorithms
• do recursion in uneven sizes (e.g. both n/3 and n/4), . . .
• or in size

√
n, or even log(n), . . .

• or have extra work more complicated than ny

No master theorem covers everything. But recursion trees still work:
• find out how many nodes, of what size, there are at each level
• gives the total work per level
• warning, in case of uneven size recursion, some levels may not be complete
→ not always clear that you get a Θ (example: linear time median, later)

Remark:
• to be 100% clean, we should justify that we can work with sloppy recurrences.
• don’t worry about it; it can be done (but gets more difficult than for merge sort)
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Example: “generalized” master theorem

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T

(
n

b

)
+ f(n), T (n) = d (n ≤ 1), inf

n
f(n) > 0

Let x = logb a (so a = bx).

Then T (n) ∈


Θ(f(n)) if f(n) ∈ Ω(nx+ε), for some ε > 0
Θ(nx log n) if f(n) ∈ Θ(nx)
Θ(nx) if f(n) ∈ O(nx−ε), for some ε > 0

Proof: by recursion tree, no details.
Remark: we can either say “for n a power of b” or extend the definition of T to all n ∈ R
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Examples and non-examples

T (n) = 3T (n/4) + n log(n).

• x = log4(3) < 1
• f(n) ∈ Ω(n1) = Ω(nx+ε) where ε = 1− x > 0
• so T (n) ∈ Θ(n log(n))

T (n) = 2T (n/2) + n log(n).

• x = log2(2) = 1
• f(n) ∈ Ω(n) implies not case three
• f(n) /∈ Θ(n) implies not case two
• f(n)/nx+ε = log(n)/nε → 0 implies f(n) ∈ o(nx+ε) for all ε > 0
• therefore f(n) /∈ Ω(nx+ε) and not case one
• No case of the master theorem applies
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Linear time median
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Median of medians

Selection: given A[0..n− 1] and k in {0, . . . , n− 1}, find the entry that would be at index
k if A was sorted

Minimum: select from A[0..n− 1] at index k = 0
Maximum: select from A[0..n− 1] at index k = n− 1

Median: select from A[0..n− 1] at index ⌊n/2⌋

Model: unit cost

Known results: sorting A in Θ(n log(n)), or a simple randomized algorithm in expected
time Θ(n)
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The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p← choose-pivot(A)
2. i, j ← partition(A, p)
3. if i ≤ k ≤ j then
4. return p
5. else if k < i then
6. return quick-select(A[0, 1, . . . , i− 1], k)
7. else if j < k then
8. return quick-select(A[j + 1, j + 2, . . . , n− 1], k − j − 1)

partition(A, p):
• reorders A so that [< p, A[i] = p, . . . , A[j] = p, > p] in linear time

Goal: find a pivot such that both i and n − j − 1 are not too large
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10

Proof
• half of the mi’s are greater than or equal to p n/10
• for each mi, there are 3 elements in Gi greater than or equal to mi

• so at least 3n/10 elements greater than or equal to p

• so at most 7n/10 elements less than p

• so i is at most 7n/10. Same thing for n− j − 1
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Median of medians
Sketch of the algorithm:
• divide A into n/5 groups G1, . . . , Gn/5 of size 5
• find the medians m1, . . . , mn/5 of each group Θ(n)
• pivot p is the median of [m1, . . . , mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − j − 1 are at most 7n/10

Consequence: (sloppy) recurrence

T (n) = T (n/5) + T (7n/10) + cn

Claim

This gives worst-case T (n) ∈ Θ(n) (Ω(n) clear)
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The recursion tree for T (n)
Can prove: we can set T (n) = 0 for n ≤ 1.
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Key point: T (n) < cn × (geometric sum of ratio 9/10 < 1), so T (n) ∈ O(n).
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Why not median of three?
• we do n/3 groups of 3 and find their medians m1, . . . , mn/3 Θ(n)
• p is the median of [m1, . . . , mn/3] T (n/3)
• half of the mi’s are greater than or equal to p n/6
• in each group, 2 elements greater than or equal to mi

• so overall at least n/3 elements greater than or equal to p

• so at most 2n/3 elements less than p

• so i ≤ 2n/3, and n − j − 1 ≤ 2n/3

Recurrence: T (n) = T (n/3) + T (2n/3) + cn

Exercise

This gives T (n) ∈ Θ(n log(n))
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The recursion tree for T (n)

n
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Key point: cn log3 ≤ T (n) ≤ cn log3/2(n) so T (n) ∈ Θ(n log n).
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Closest pairs
(time permitting)
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Closest pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that minimizes the distance

di,j =
√

(xi − xj)2 + (yi − yj)2

Equivalent to minimize
d2

i,j = (xi − xj)2 + (yi − yj)2

Assumption

all xi’s distinct
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Divide-and-conquer
Idea: separate the points into two halves L, R at the median x-value
• L = all n/2 points with x ≤ xmedian (no other point on the median line)
• R = all n/2 points with x > xmedian
• find the closest pairs in both L and R recursively
• the closest pair is either between points in L (done), or between points in R (done), or

transverse (one in L, one in R)

δL = 4

δR = 2
√

5
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Divide-and-conquer

Familiar pattern . . .

ClosestPair(P )
P : array of points of size n
1. L, R← PartitionByMedianX(P )
2. δL ← ClosestPair(L)
3. δR ← ClosestPair(R)
4. δT ← TransverseClosestPair(L, R) ???
5. return min(δL, δR, δT )
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Divide-and-conquer

Idea: We only have to find transverse pairs closer than δ

ClosestPair(P )
P : array of points of size n
1. L, R← PartitionByMedianX(P )
2. δL ← ClosestPair(L)
3. δR ← ClosestPair(R)
4. δ ← min(δL, δR)
5. return TransverseCase(L, R, δ) ???
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• only need to consider transverse pairs (P, Q) with dist(P, R) ≤ δ and

dist(Q, L) ≤ δ.

P

δL = 4

δR = 2
√

5
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• for any P = (xP , yP ), enough to look at points with yP ≤ y ≤ yP + δ

P

δL = 4

δR = 2
√

5
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Finding the shortest transverse distance
Set δ = min(δL, δR)
• for any P = (xP , yP ), enough to look at points with yP ≤ y ≤ yP + δ

So it is enough to check distances d(P, Q) for Q in the rectangle.

P

δL = 4

δR = 2
√

5
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How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.
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How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

P

δL = 4

δR = 2
√
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How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P ) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2
• they overlap along lines, but it’s OK

• a square on the left contains at most one point from L

• a square on the right contains at most one point from R

Consequence: at most 8 points in the range yP ≤ y ≤ yP + δ
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Data structures and runtime
Initialization: sort the points twice, with respect to x and to y.
One-time cost O(n log(n)), before recursive calls cf kd-trees

Main algo: given two arrays representing the same points (Ax sorted in x, Ay sorted in y)
• find the x-median using Ax Θ(1)
• split both Ax and Ay for recursions Θ(n)
• recurse on L and R 2T (n/2)
• remove the points at distance ≥ δ from the x-median line from Ay Θ(n)
• inspect all remaining points P in Ay (=in increasing y-order)

for each P , compute the distance to points Q in Ay with yP ≤ yQ ≤ yP + δ min.
at most 8 points Q need to be checked per P Θ(n)

Runtime: T (n) = 2T (n/2) + cn so T (n) ∈ Θ(n log(n))
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