CS 341: Algorithms

Lecture 5: Greedy algorithms

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

This chapter: the greedy paradigm through examples

- job scheduling
- interval scheduling
- more scheduling
- fractional knapsack
- and so on

Goals

This chapter: the greedy paradigm through examples

- job scheduling
- interval scheduling
- more scheduling
- fractional knapsack
- and so on

Computational model:

- word RAM
- assume all quantities we work with (weights, capacities, deadlines, ...) fit in a word

Overview

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- have a **large, but finite**, set S
- want to find an element *E* in S that **minimizes / maximizes** a cost function

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- have a **large, but finite**, set S
- want to find an element *E* in S that **minimizes / maximizes** a cost function

Greedy strategy:

- build *E* step-by-step
- don't think ahead, just try to improve as much as you can at every step
- simple algorithms
- but usually, no guarantee to get the optimal
- it is often **hard** to prove correctness, and **easy** to prove incorrectness.

Example: Huffman

Review from CS240: the **Huffman tree**

- we are given "frequencies" f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Example: Huffman

Review from CS240: the **Huffman tree**

- we are given "frequencies" f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Greedy strategy: we build the tree **bottom up**.

- create *n* single-letter trees
- define the **frequency** of a tree as the sum of the frequencies of the letters in it
- build the final tree by putting together smaller trees: **join the two trees with the least frequencies**

Claim

this minimizes $\sum_i f_i \times \{\text{length of encoding of } c_i\}$

Proof: takes some work. Progressively transform any other solution into the greedy one.

Minimizing completion time

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- an ordering of the jobs that minimizes the **sum** *T* **of the completions times**
- **completion time:** how long it took **(since the beginning)** to complete a job

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- an ordering of the jobs that minimizes the **sum** *T* **of the completions times**
- **completion time:** how long it took **(since the beginning)** to complete a job

Example:

- $n = 5$, processing times [2, 8, 1, 10, 5]
- in this order, $T = 2 + (8 + 2) + (1 + 8 + 2) + (10 + 1 + 8 + 2) + (5 + 10 + 1 + 8 + 2) = 70$
- in the order $[1, 2, 5, 8, 10]$, $T = 1 + (2 + 1) + (5 + 2 + 1) + (8 + 5 + 2 + 1) + (10 + 8 + 5 + 2 + 1) = 54$

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Correctness (exchange argument)

- let $L = [e_1, \ldots, e_n]$ be a permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of processing times. Can it be optimal?
- by assumption there exists *i* such that $t(e_i) > t(e_{i+1})$
- sum of the completion times of *L* is $nt(e_1) + (n-1)t(e_2) + \cdots + t(e_n)$
- the contribution of e_i and e_{i+1} is $(n-i+1)t(e_i) + (n-i)t(e_{i+1})$
- now, swap e_i and e_{i+1} to get a permutation L'
- their contribution becomes $(n-i+1)t(e_{i+1}) + (n-i)t(e_i)$
- nothing else changes so $T(L') T(L) = t(e_{i+1}) t(e_i) < 0$
- so *L* **not optimal**

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Review from CS240

- optimal static order for linked list implementation of dictionaries
- same result (up to reverse), same proof

Interval scheduling

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_j = \text{start}(I_j)$, $f_j = \text{finish}(I_j)$

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_j =$ **start** (I_j) , $f_j =$ **finish** (I_j)

Output:

• a choice *T* of intervals that **do not overlap** and that has **maximal cardinality**

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_i = \text{start}(I_i)$, $f_i = \text{finish}(I_i)$

Output:

• a choice *T* of intervals that **do not overlap** and that has **maximal cardinality**

Example: A car rental company has the following requests for a given day:

- *I*1: 2pm to 8pm
- *I*2: 3pm to 4pm
- I_3 : 5pm to 6pm

Answer is $T = [I_2, I_3]$.

Attempt 1:

• pick the interval with the **earliest starting time** that creates no conflict

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

• pick the **shortest interval** that creates no conflict

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

- pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

- pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

• pick the interval with the **fewest overlaps** that creates no conflict

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

- pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

• pick the interval with the **fewest overlaps** that creates no conflict

• **no**, for example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

- pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

• pick the interval with the **fewest overlaps** that creates no conflict

• **no**, for example

Attempt 4:

 \bullet pick the interval with the earliest finish time, that creates no conflict

An *O*(*n* log(*n*)) **implementation**

 $\textbf{Greedy}(\textbf{\textit{I}} = [I_1, \dots, I_n])$ 1. $T \leftarrow []$ 2. sort \overrightarrow{I} by non-decreasing finish time 3. **for** $k = 1, ..., n$ **do** 4. if *I^k* does not overlap the last entry in *T* 5. append I_k to T

Correctness: greedy is optimal

Let

- $T = [x_1, \ldots, x_n]$ be the intervals chosen by algorithm,
- $S = [\mathbf{y}_1, \dots, \mathbf{y}_q]$ be any choice without overlaps,
- both sorted by increasing finish time
- want to prove $p > q$

Proof (again, by an exchange argument)

- by induction: for $k = 0, \ldots, q, p > k$ and $[x_1, \cdots, x_k, y_{k+1}, \cdots, y_q]$ has no overlap **and is sorted by increasing finish time**
- OK for $k = 0$, so we suppose true for some $k < q$, and prove for $k + 1$
- since $[x_1, \ldots, x_k, y_{k+1}]$ is satisfiable, the algorithm didn't stop at x_k . So $p \geq k+1$.
- by definition of x_{k+1} , **finish** $(x_{k+1}) \le$ **finish** (y_{k+1}) . So we can replace y_{k+1} by x_{k+1} and we get $[x_1, \dots, x_{k+1}, y_{k+2}, \dots, y_q]$, which is still satisfiable and sorted by increasing finish time

Interval coloring

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_j = \text{start}(I_j)$, $f_j = \text{finish}(I_j)$

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_i = \text{start}(I_i)$, $f_i = \text{finish}(I_i)$

Output:

- assignment of **colors** to each interval
- overlapping intervals get **different colors**
- **minimize** the number of colors used overall

Remarks:

- another version: finding classrooms for lectures
- colors \leftrightarrow numbers $1, 2, \ldots$
- **finish** (I_i) = **start** (I_k) not an overlap

- sort intervals by **non-decreasing finish times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Available colors: · · ·

- sort intervals by **non-decreasing finish times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Available colors: · · ·

- sort intervals by **non-decreasing finish times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Available colors: · · ·

Attempt 1:

- sort intervals by **non-decreasing finish times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

• does not work

- sort intervals **from shortest to longest**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

- sort intervals **from shortest to longest**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

- sort intervals **from shortest to longest**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Attempt 2:

- sort intervals **from shortest to longest**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

• does not work

Attempt 3:

- sort intervals **by non-decreasing start times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Attempt 3:

- sort intervals **by non-decreasing start times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Attempt 3:

- sort intervals **by non-decreasing start times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

Attempt 3:

- sort intervals **by non-decreasing start times**
- for $j = 1, \ldots, n$, use the **first possible color** for I_j (no same-color overlap with I_1, \ldots, I_{i-1}

• maybe, needs proof

Correctness of the third attempt

Claim

Suppose the output uses *k* colors. Then, **we cannot use fewer**.

Correctness of the third attempt

Claim

Suppose the output uses *k* colors. Then, **we cannot use fewer**.

Proof

- suppose we color *I^t* with color *k*
- so I_t overlaps with $k-1$ intervals, say $I_{\alpha_1}, \ldots, I_{\alpha_{k-1}}$ seen previously
- so for all $j = 1, ..., k 1$, $s_{\alpha_j} \leq s_t < f_{\alpha_j}$
- so at time s_t , we can't do with less than k colors

Exercises

- $\Theta(n \log(n) + nk)$ easy. Give a $\Theta(n \log(n))$ algorithm
- write an exchange-based proof