CS 341: Algorithms

Lecture 5: Greedy algorithms

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

This chapter: the greedy paradigm through examples

- job scheduling
- $\bullet\,$ interval scheduling
- more scheduling
- $\bullet\,$ fractional knapsack
- and so on

Goals

This chapter: the greedy paradigm through examples

- job scheduling
- $\bullet\,$ interval scheduling
- more scheduling
- fractional knapsack
- and so on

Computational model:

- word RAM
- assume all quantities we work with (weights, capacities, deadlines, \dots) fit in a word

Overview

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- $\bullet\,$ have a large, but finite, set ${\cal S}$
- \bullet want to find an element E in ${\mathcal S}$ that minimizes / maximizes a cost function

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- $\bullet\,$ have a large, but finite, set ${\cal S}$
- want to find an element E in \mathcal{S} that **minimizes / maximizes** a cost function

Greedy strategy:

- build E step-by-step
- don't think ahead, just try to improve as much as you can at every step
- simple algorithms
- but usually, no guarantee to get the optimal
- it is often hard to prove correctness, and easy to prove incorrectness.

Example: Huffman

Review from CS240: the Huffman tree

- we are given "frequencies" f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Example: Huffman

Review from CS240: the Huffman tree

- we are given "frequencies" f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Greedy strategy: we build the tree bottom up.

- create n single-letter trees
- define the **frequency** of a tree as the sum of the frequencies of the letters in it
- build the final tree by putting together smaller trees: join the two trees with the least frequencies

Claim

this minimizes $\sum_{i} f_i \times \{ \text{length of encoding of } c_i \}$

Proof: takes some work. Progressively transform any other solution into the greedy one.

Minimizing completion time

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- an ordering of the jobs that minimizes the sum T of the completions times
- completion time: how long it took (since the beginning) to complete a job

Input:

• *n* jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- an ordering of the jobs that minimizes the sum T of the completions times
- completion time: how long it took (since the beginning) to complete a job

Example:

- n = 5, processing times [2, 8, 1, 10, 5]
- in this order,

T = 2 + (8+2) + (1+8+2) + (10+1+8+2) + (5+10+1+8+2) = 70

• in the order [1, 2, 5, 8, 10], T = 1 + (2+1) + (5+2+1) + (8+5+2+1) + (10+8+5+2+1) = 54

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Greedy algorithm

Algorithm:

 \bullet order the jobs in ${\sf non-decreasing}$ processing times

Correctness (exchange argument)

- let $L = [e_1, \ldots, e_n]$ be a permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of processing times. Can it be optimal?
- by assumption there exists *i* such that $t(e_i) > t(e_{i+1})$
- sum of the completion times of L is $nt(e_1) + (n-1)t(e_2) + \cdots + t(e_n)$
- the contribution of e_i and e_{i+1} is $(n-i+1)t(e_i) + (n-i)t(e_{i+1})$
- now, swap e_i and e_{i+1} to get a permutation L'
- their contribution becomes $(n i + 1)t(e_{i+1}) + (n i)t(e_i)$
- nothing else changes so $T(L') T(L) = t(e_{i+1}) t(e_i) < 0$
- so *L* not optimal

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Review from CS240

- optimal static order for linked list implementation of dictionaries
- same result (up to reverse), same proof

Interval scheduling

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$
- also write $s_j = \text{start}(I_j), f_j = \text{finish}(I_j)$

start time, finish time

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$
- also write $s_j = \text{start}(I_j), f_j = \text{finish}(I_j)$

start time, finish time

Output:

• a choice T of intervals that **do not overlap** and that has **maximal cardinality**

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$
- also write $s_j = \text{start}(I_j), f_j = \text{finish}(I_j)$

start time, finish time

Output:

 $\bullet\,$ a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:

- I_1 : 2pm to 8pm
- I_2 : 3pm to 4pm
- I_3 : 5pm to 6pm

Answer is $T = [I_2, I_3]$.

Attempt 1:

• pick the interval with the **earliest starting time** that creates no conflict

- pick the interval with the **earliest starting time** that creates no conflict
- no, previous example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

• pick the **shortest interval** that creates no conflict

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

- $\bullet\,$ pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- **no**, previous example

Attempt 2:

- $\bullet\,$ pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

 $\bullet\,$ pick the interval with the fewest~overlaps that creates no conflict

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- no, previous example

Attempt 2:

- $\bullet\,$ pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

• pick the interval with the **fewest overlaps** that creates no conflict

• no, for example

Attempt 1:

- pick the interval with the **earliest starting time** that creates no conflict
- no, previous example

Attempt 2:

- $\bullet\,$ pick the **shortest interval** that creates no conflict
- **no**, for example

Attempt 3:

• pick the interval with the **fewest overlaps** that creates no conflict

• **no**, for example

Attempt 4:

• pick the interval with the earliest finish time, that creates no conflict

An $O(n \log(n))$ implementation

 $\begin{aligned} \mathbf{Greedy}(\boldsymbol{I} = [I_1, \dots, I_n]) \\ 1. \quad T \leftarrow [] \\ 2. \quad \text{sort } \boldsymbol{I} \text{ by non-decreasing finish time} \\ 3. \quad \mathbf{for } k = 1, \dots, n \text{ do} \\ 4. \quad & \text{if } I_k \text{ does not overlap the last entry in } T \\ 5. \qquad & \text{append } I_k \text{ to } T \end{aligned}$

Correctness: greedy is optimal

Let

- $T = [x_1, \ldots, x_p]$ be the intervals chosen by algorithm,
- $S = [y_1, \ldots, y_q]$ be any choice without overlaps,
- both sorted by increasing finish time
- want to prove $p \geq q$

Proof (again, by an exchange argument)

- by induction: for k = 0, ..., q, $p \ge k$ and $[x_1, \cdots, x_k, y_{k+1}, \cdots, y_q]$ has no overlap and is sorted by increasing finish time
- OK for k = 0, so we suppose true for some k < q, and prove for k + 1
- since $[x_1, \ldots, x_k, y_{k+1}]$ is satisfiable, the algorithm didn't stop at x_k . So $p \ge k+1$.
- by definition of x_{k+1} , finish $(x_{k+1}) \leq \text{finish}(y_{k+1})$. So we can replace y_{k+1} by x_{k+1} and we get $[x_1, \dots, x_{k+1}, y_{k+2}, \dots, y_q]$, which is still satisfiable and sorted by increasing finish time

Interval coloring

Input:

- *n* intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- also write $s_j = \text{start}(I_j), f_j = \text{finish}(I_j)$

start time, finish time

Input:

- *n* intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- also write $s_j = \text{start}(I_j), f_j = \text{finish}(I_j)$

Output:

- \bullet assignment of ${\bf colors}$ to each interval
- overlapping intervals get different colors
- minimize the number of colors used overall

Remarks:

- another version: finding classrooms for lectures
- colors \leftrightarrow numbers $1, 2, \ldots$
- $finish(I_j) = start(I_k)$ not an overlap

start time, finish time

- sort intervals by non-decreasing finish times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

- $\bullet\ {\rm sort\ intervals\ by\ non-decreasing\ finish\ times}$
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

- $\bullet\ {\rm sort\ intervals\ by\ non-decreasing\ finish\ times}$
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

Attempt 1:

- sort intervals by non-decreasing finish times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

• does not work

- sort intervals from shortest to longest
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

- sort intervals from shortest to longest
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

- sort intervals from shortest to longest
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

Attempt 2:

- sort intervals from shortest to longest
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

• does not work

Attempt 3:

- sort intervals by non-decreasing start times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

Attempt 3:

- sort intervals by non-decreasing start times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

Attempt 3:

- sort intervals by non-decreasing start times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

Attempt 3:

- sort intervals by non-decreasing start times
- for j = 1, ..., n, use the first possible color for I_j (no same-color overlap with $I_1, ..., I_{j-1}$)

• maybe, needs proof

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer.

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer.

Proof

- suppose we color I_t with color k
- so I_t overlaps with k-1 intervals, say $I_{\alpha_1}, \ldots, I_{\alpha_{k-1}}$ seen previously
- so for all $j = 1, \ldots, k 1, s_{\alpha_j} \leq s_t < f_{\alpha_j}$
- so at time s_t , we can't do with less than k colors

Exercises

- $\Theta(n\log(n) + nk)$ easy. Give a $\Theta(n\log(n))$ algorithm
- write an exchange-based proof