CS 341: Algorithms

Lecture 5: Greedy algorithms

Slides due to Eric Schost and based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2026

1/25

Master theorem — correction

Suppose that @ > 1 and b > 1. Consider the recurrence
T(n)zaT(Z)%—f(n), T(n)=d (n<1), i%ff(n)>0
Let = logya (so a =b").

O(f(n)) if f(n) € Q(n®*¢), for some £ > 0
and regularity condition

O(n”logn) if f(n) € ©(n")

O(n®) if f(n) € O(n*~¢), for some ¢ > 0

Then T'(n) €

Regularity: af(n/b) < cf(n) for all sufficiently large n and some ¢ < 1.

2/25

Regularity

If f(n)/n®"¢ is non-decreasing for some ¢ > 0 then the regularity condition holds.

f/y) _ I
(n/b)x—i-s - npxte
b*f(n/b) < b~ f(n)
af(n/b) < cf(n)

where we recall a = b* and let ¢ = b7° < 1.

3/25

Closest Pair

ClosestPair(A)

A: array of points of size n sorted by y

1. Tmedian < Median(A)

L, R < Partition(A4, Zedian)

d1, < ClosestPair(L)

dgr < ClosestPair(R)

0+ min(&béR)

return TransversePairs(A, T,,cdian, 0)

SRR i S

TransversePairs(A, Z,edian,)
A: array of points of size n sorted by y

1. opt + ¢

2. A<+ [(z,y) € A| =6 < & — Tmedian < 0]

3. for P € A:

4. for @ € A such that yp <yg <yp+9

5. compute d(P, @), replace opt if better
6. return opt

4/25

Greedy Algorithms

5/25

Goals

This chapter: the greedy paradigm through examples

job scheduling

interval scheduling

more scheduling

fractional knapsack

® and so on

Computational model:

e all input quantities we work with (weights, capacities, deadlines, ...) fit in a word

® unit cost

6/25

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
® have a large, but finite, set S (orderings of tasks, sets of possible tasks, trees, ...)
® want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:
¢ build E step-by-step
® don’t think ahead, just try to improve as much as you can at every step
e simple algorithms, but it is often hard to prove correctness

A recurrent proof pattern

® let Egreedy be the greedy solution
® let E be any other solution

¢ transform F into Egreeqy progressively, making sure the cost never increases

7/25

Example: Huffman

Review from CS240: the Huffman tree
® we are given “frequencies” fi,..., f, for characters cy,...,c,
® want a code (character ¢; — word w; in {0,1})
e want prefix-free: build a binary tree
® minimize expected codeword length, E[length(w;)] = >, filength(w;)

Greedy strategy: we build the tree bottom up.
® create n single-letter trees
define the frequency of a tree as the sum of the frequencies of the letters in it
build the final tree by joining smaller trees
greedy choice: join the two trees with the least frequencies

Claim

this minimizes Y, f; x {length of w;}

Proof: takes some work. Progressively transform any other tree into the greedy one. g /25

Minimizing completion time

9/25

The problem

Input:

® n jobs, with processing times [t(1),...,t(n)]

Output:
® an ordering of the jobs that minimizes the sum T of the completion times

® completion time: how long it took (since the beginning) to complete a job

Example:
e n =5, processing times [2,8,1, 10, 5]
® in this order,
T=2+ (8+2) + (1+8+2) + (10+1+8+2) + (5+10+1+8+2)=70
® in the order [1,2,8,5,10],
T'=1+ (2+1) + 8+2+1) + 5+8+2+1) + (104+5+8+2+1) =57
e in the order [1,2,5,8,10],
T=1+ 2+1) + 6+2+1) + B+5+2+1) + (10+8+5+2+1) =54
10/25

Greedy algorithm

Let L =[e1,...,€;,€i41,...,6p) and L' = [e1,...,€;41,¢€;,...,€,] be permutations of
[1,...,n] that differ by a swap of e; and e;11.

The cost difference is cost(L') — cost(L) = t(e;+1) — t(e;).

cost(L') —cost(L) = (n—i+ Dt(ei1) + (n —i)t(e;)
— (n—i—=1)i(e:) — (n = i)t(eir1)
= t(6i+1) — t(ei).

11/25

Greedy algorithm

Algorithm: order the jobs in non-decreasing processing times

® let L =[ey,...,e,] be a permutation of [1,...,n]
® suppose that we don’t have t(e1) < t(eq) - < t(ey)

® then we can find a better permutation L’ by removing an inversion

12/25

Greedy algorithm

Algorithm: order the jobs in non-decreasing processing times

To prove correctness

® let L =[ey,...,e,] be a permutation of [1,...,n]
® suppose that we don’t have t(e1) < t(eq) - < t(ey)

e then we can find a better permutation L’ by removing an inversion

1. by assumption there exists i such that t(e;) > t(e;41)
2. use the lemma: cost(L’) — cost(L) = t(e;4+1) — t(e;) <0

3. cost is improved

12 /25

Greedy algorithm
Algorithm: order the jobs in non-decreasing processing times

Review from CS240
e optimal static order for linked list implementation of dictionaries

e same result (up to reverse), same proof

cost(L) = Z if(e;)
=1

12 /25

Interval scheduling

13/25

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n] start time, finish time

* also write s; = start(I;), f; = finish(I;)

Output:
® 3 choice T of intervals that do not overlap and that has maximal cardinality

* finish(I;) = start(I}) not an overlap

Example: A car rental company has the following requests for a given day:
I;: 2pm to 8pm
I5: 3pm to 4pm
I3: 5pm to 6pm

Optimum is T = [Io, I3].

14/25

A few attempts

Attempt 1:

® pick the interval with the earliest starting time that creates no conflict

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

® no, for example = =

15 /25

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

® no, for example = =

Attempt 4:

® pick the interval with the earliest finish time, that creates no conflict

15 /25

A O(nlog(n)) implementation

Greedy(I = [I4,...,1,])
T+]
sort I by non-decreasing finish time
for k=1,...,ndo
if I}, does not overlap the last entry in T’
append [to T

Ol b=

16 /25

Correctness: greedy is optimal

® T'=[xz1,...,2p| be the intervals chosen by algorithm

® S =[yi,...,Yq] be any feasible choice (sorted by increasing finish time)

® want to prove p > q

17/25

Correctness: greedy is optimal

To prove correctness

® T'=[xz1,...,2p| be the intervals chosen by algorithm
® S =[yi,...,Yq] be any feasible choice (sorted by increasing finish time)

® want to prove p > q

Proof by induction: for k = 0,...,q,p > k, [®1,..., Tk, Yk+1,- - -, Yq| feasible and
sorted by increasing finish time

17/25

Correctness: greedy is optimal

To prove correctness

® T =[x1,...,xp] be the intervals chosen by algorithm
* S=[y1,...,yq] be any feasible choice (sorted by increasing finish time)

® want to prove p > q

Proof by induction: for k = 0,...,q,p > k, [®1,..., Tk, Yk+1,- - -, Yq| feasible and
sorted by increasing finish time
e OK for k =0, so we suppose true for some k < ¢, and prove for k + 1
e finish(xy) < finish(yr+1) and [x1,..., Tk, Yr4+1] feasible, so the algorithm didn’t
stop at xx. Sop > k + 1.
¢ by definition, finish(xgy1) < finish(ygy1). So we can replace yr11 by zr11 and we
get [@1,.. .y Thoy1s Yk42, - - - » Yq, Which is still feasible and sorted by increasing
finish time

17/25

Interval coloring

18 /25

The problem

Input:
e n intervals Iy = [s1, fi],- .-, In = [Sn, fn]
® also write s; = start(I;), f; = finish(I;)

Output:
e assignment of colors to each interval
® overlapping intervals get different colors

® minimize the number of colors used overall

Remarks:
® another version: finding classrooms for lectures
e colors <> indices 1,2, 3, ...

e finish(I;) = start(I;) not an overlap

start time, finish time

19/25

An example

Available colors:

20/25

An example

Available colors:

20/25

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[1]
]
]
]

21/25

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[1]
]
]
]

21/25

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[1]
]

® does not give the optimal

21/25

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]
]
]

22 /25

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]
]
]

22 /25

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]

® does not give the optimal

22 /25

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]
]
]

23 /25

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]
]
]

23 /25

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times
e for j =1,...,n, use for I; the smallest existing color (smallest index)
that creates no conflict, or a new color if needed
[]
]
]

]

® maybe, needs proof

23 /25

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer than k.

Proof
® suppose we color I; with color k
® so I; overlaps with k — 1 intervals, say I,,,..., I, , seen previously
® because we sorted by start time, for all j =1,...,k — 1, 8q; < 8t < fo,
® 5o at time sy, we can’t do with less than k colors

24 /25

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer than k.

Proof
® suppose we color I; with color k
® so I; overlaps with k — 1 intervals, say I,,,..., I, , seen previously
® because we sorted by start time, for all j =1,...,k — 1, 8q; < 8t < fo,
® 5o at time sy, we can’t do with less than k colors

Remark: could also write a proof closer in spirit to the previous ones:
e T'=lc1,...,Cy) are the colors chosen by algorithm
e S=[dy,...,dy] is any other feasible choice
® prove that S uses more (or same) number of colors by transforming it into 7'
progressively

24 /25

A O(nlogn) implementation

Color
1. sort the array A = [[s;, “start”, i]]1.., cat [[f;, “finish”,i]]1., by time
(to break ties: finish comes before start)
2. CIl..n] < array (of color indices)
3. H <+ min-heap of available color indices, initially empty
4. k<« 0
5. for all entries of A (in increasing order)
if interval ¢ starts, set C[i] = min element in H (if not empty) or ++k (if empty)
if interval ¢ ends, insert C[i] in H
6. return C

Remark: picking any available color would work too.

25 /25

