
CS 341: Algorithms

Lecture 5: Greedy algorithms

Slides due to Éric Schost and based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2026

1 / 25

Master theorem – correction

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T

(
n

b

)
+ f(n), T (n) = d (n ≤ 1), inf

n
f(n) > 0

Let x = logb a (so a = bx).

Then T (n) ∈


Θ(f(n)) if f(n) ∈ Ω(nx+ε), for some ε > 0

and regularity condition
Θ(nx log n) if f(n) ∈ Θ(nx)
Θ(nx) if f(n) ∈ O(nx−ε), for some ε > 0

Regularity: af(n/b) ≤ cf(n) for all sufficiently large n and some c < 1.

2 / 25

Regularity

Theorem

If f(n)/nx+ε is non-decreasing for some ε > 0 then the regularity condition holds.

Proof

f(n/b)
(n/b)x+ε

≤ f(n)
nx+ε

bxf(n/b) ≤ b−εf(n)
af(n/b) ≤ cf(n)

where we recall a = bx and let c = b−ε < 1.

3 / 25

Closest Pair
ClosestPair(A)
A: array of points of size n sorted by y
1. xmedian ←Median(A)
2. L, R← Partition(A, xmedian)
3. δL ← ClosestPair(L)
4. δR ← ClosestPair(R)
5. δ ← min(δL, δR)
6. return TransversePairs(A, xmedian, δ)

TransversePairs(A, xmedian, δ)
A: array of points of size n sorted by y
1. opt← δ
2. A← [(x, y) ∈ A | −δ < x− xmedian < δ]
3. for P ∈ A:
4. for Q ∈ A such that yP ≤ yQ < yP + δ
5. compute d(P, Q), replace opt if better
6. return opt

4 / 25

Greedy Algorithms

5 / 25

Goals

This chapter: the greedy paradigm through examples
• job scheduling
• interval scheduling
• more scheduling
• fractional knapsack
• and so on

Computational model:
• all input quantities we work with (weights, capacities, deadlines, . . .) fit in a word
• unit cost

6 / 25

Greedy algorithms
Context: we are trying to solve a combinatorial optimization problem:
• have a large, but finite, set S (orderings of tasks, sets of possible tasks, trees, . . .)
• want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:
• build E step-by-step
• don’t think ahead, just try to improve as much as you can at every step
• simple algorithms, but it is often hard to prove correctness

A recurrent proof pattern

• let Egreedy be the greedy solution
• let E be any other solution
• transform E into Egreedy progressively, making sure the cost never increases

7 / 25

Example: Huffman
Review from CS240: the Huffman tree
• we are given “frequencies” f1, . . . , fn for characters c1, . . . , cn

• want a code (character ci 7→ word wi in {0, 1})
• want prefix-free: build a binary tree
• minimize expected codeword length, E[length(wi)] =

∑
i filength(wi)

Greedy strategy: we build the tree bottom up.
• create n single-letter trees
• define the frequency of a tree as the sum of the frequencies of the letters in it
• build the final tree by joining smaller trees
• greedy choice: join the two trees with the least frequencies

Claim

this minimizes
∑

i fi × {length of wi}

Proof: takes some work. Progressively transform any other tree into the greedy one. 8 / 25

Minimizing completion time

9 / 25

The problem
Input:
• n jobs, with processing times [t(1), . . . , t(n)]

Output:
• an ordering of the jobs that minimizes the sum T of the completion times
• completion time: how long it took (since the beginning) to complete a job

Example:
• n = 5, processing times [2, 8, 1, 10, 5]
• in this order,

T = 2 + (8 + 2) + (1 + 8 + 2) + (10 + 1 + 8 + 2) + (5 + 10 + 1 + 8 + 2) = 70
• in the order [1, 2, 8, 5, 10],

T = 1 + (2 + 1) + (8 + 2 + 1) + (5 + 8 + 2 + 1) + (10 + 5 + 8 + 2 + 1) = 57
• in the order [1, 2, 5, 8, 10],

T = 1 + (2 + 1) + (5 + 2 + 1) + (8 + 5 + 2 + 1) + (10 + 8 + 5 + 2 + 1) = 54
10 / 25

Greedy algorithm

Lemma

Let L = [e1, . . . , ei, ei+1, . . . , en] and L′ = [e1, . . . , ei+1, ei, . . . , en] be permutations of
[1, . . . , n] that differ by a swap of ei and ei+1.

The cost difference is cost(L′)− cost(L) = t(ei+1)− t(ei).

Proof

cost(L′)− cost(L) = (n− i + 1)t(ei+1) + (n− i)t(ei)
− (n− i− 1)t(ei)− (n− i)t(ei+1)

= t(ei+1)− t(ei).

11 / 25

Greedy algorithm
Algorithm: order the jobs in non-decreasing processing times

To prove correctness

• let L = [e1, . . . , en] be a permutation of [1, . . . , n]
• suppose that we don’t have t(e1) ≤ t(e2) · · · ≤ t(en)
• then we can find a better permutation L′ by removing an inversion

12 / 25

Greedy algorithm
Algorithm: order the jobs in non-decreasing processing times

To prove correctness

• let L = [e1, . . . , en] be a permutation of [1, . . . , n]
• suppose that we don’t have t(e1) ≤ t(e2) · · · ≤ t(en)
• then we can find a better permutation L′ by removing an inversion

1. by assumption there exists i such that t(ei) > t(ei+1)
2. use the lemma: cost(L′)− cost(L) = t(ei+1)− t(ei) < 0
3. cost is improved

12 / 25

Greedy algorithm
Algorithm: order the jobs in non-decreasing processing times

Review from CS240
• optimal static order for linked list implementation of dictionaries
• same result (up to reverse), same proof

cost(L) =
n∑

i=1
if(ei)

12 / 25

Interval scheduling

13 / 25

The problem
Input:
• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time
• also write sj = start(Ij), fj = finish(Ij)

Output:
• a choice T of intervals that do not overlap and that has maximal cardinality
• finish(Ij) = start(Ik) not an overlap

Example: A car rental company has the following requests for a given day:
I1: 2pm to 8pm
I2: 3pm to 4pm
I3: 5pm to 6pm

Optimum is T = [I2, I3].

14 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict

• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict

• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A few attempts
Attempt 1:
• pick the interval with the earliest starting time that creates no conflict
• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict

15 / 25

A Θ(n log(n)) implementation

Greedy(I = [I1, . . . , In])
1. T ← []
2. sort I by non-decreasing finish time
3. for k = 1, . . . , n do
4. if Ik does not overlap the last entry in T
5. append Ik to T

16 / 25

Correctness: greedy is optimal

To prove correctness

• T = [x1, . . . , xp] be the intervals chosen by algorithm
• S = [y1, . . . , yq] be any feasible choice (sorted by increasing finish time)
• want to prove p ≥ q

Proof by induction: for k = 0, . . . , q, p ≥ k, [x1, . . . , xk, yk+1, . . . , yq] feasible and
sorted by increasing finish time
• OK for k = 0, so we suppose true for some k < q, and prove for k + 1
• finish(xk) ≤ finish(yk+1) and [x1, . . . , xk, yk+1] feasible, so the algorithm didn’t

stop at xk. So p ≥ k + 1.
• by definition, finish(xk+1) ≤ finish(yk+1). So we can replace yk+1 by xk+1 and we

get [x1, . . . , xk+1, yk+2, . . . , yq], which is still feasible and sorted by increasing
finish time

17 / 25

Correctness: greedy is optimal

To prove correctness

• T = [x1, . . . , xp] be the intervals chosen by algorithm
• S = [y1, . . . , yq] be any feasible choice (sorted by increasing finish time)
• want to prove p ≥ q

Proof by induction: for k = 0, . . . , q, p ≥ k, [x1, . . . , xk, yk+1, . . . , yq] feasible and
sorted by increasing finish time

• OK for k = 0, so we suppose true for some k < q, and prove for k + 1
• finish(xk) ≤ finish(yk+1) and [x1, . . . , xk, yk+1] feasible, so the algorithm didn’t

stop at xk. So p ≥ k + 1.
• by definition, finish(xk+1) ≤ finish(yk+1). So we can replace yk+1 by xk+1 and we

get [x1, . . . , xk+1, yk+2, . . . , yq], which is still feasible and sorted by increasing
finish time

17 / 25

Correctness: greedy is optimal

To prove correctness

• T = [x1, . . . , xp] be the intervals chosen by algorithm
• S = [y1, . . . , yq] be any feasible choice (sorted by increasing finish time)
• want to prove p ≥ q

Proof by induction: for k = 0, . . . , q, p ≥ k, [x1, . . . , xk, yk+1, . . . , yq] feasible and
sorted by increasing finish time
• OK for k = 0, so we suppose true for some k < q, and prove for k + 1
• finish(xk) ≤ finish(yk+1) and [x1, . . . , xk, yk+1] feasible, so the algorithm didn’t

stop at xk. So p ≥ k + 1.
• by definition, finish(xk+1) ≤ finish(yk+1). So we can replace yk+1 by xk+1 and we

get [x1, . . . , xk+1, yk+2, . . . , yq], which is still feasible and sorted by increasing
finish time

17 / 25

Interval coloring

18 / 25

The problem
Input:
• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time
• also write sj = start(Ij), fj = finish(Ij)

Output:
• assignment of colors to each interval
• overlapping intervals get different colors
• minimize the number of colors used overall

Remarks:
• another version: finding classrooms for lectures
• colors ↔ indices 1, 2, 3, . . .

• finish(Ij) = start(Ik) not an overlap

19 / 25

An example

Available colors:
· · ·

20 / 25

An example

Available colors:
· · ·

20 / 25

A few attempts

Available colors:
· · ·

Attempt 1:
• sort intervals by non-decreasing finish times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed

I4
I2

I3
I1

I4
I2

I3
I1

• does not give the optimal

21 / 25

A few attempts

Available colors:
· · ·

Attempt 1:
• sort intervals by non-decreasing finish times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I4

I2
I3

I1

I4
I2

I3
I1

• does not give the optimal

21 / 25

A few attempts

Available colors:
· · ·

Attempt 1:
• sort intervals by non-decreasing finish times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I4

I2
I3

I1

I4
I2

I3
I1

• does not give the optimal

21 / 25

A few attempts

Available colors:
· · ·

Attempt 2:
• sort intervals from shortest to longest
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed

I3
I4

I1
I2

I3
I4

I1
I2

• does not give the optimal

22 / 25

A few attempts

Available colors:
· · ·

Attempt 2:
• sort intervals from shortest to longest
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I3

I4
I1

I2

I3
I4

I1
I2

• does not give the optimal

22 / 25

A few attempts

Available colors:
· · ·

Attempt 2:
• sort intervals from shortest to longest
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I3

I4
I1

I2

I3
I4

I1
I2

• does not give the optimal

22 / 25

A few attempts

Available colors:
· · ·

Attempt 3:
• sort intervals by non-decreasing start times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed

I3
I2

I4
I1

I3
I2

I4
I1

• maybe, needs proof

23 / 25

A few attempts

Available colors:
· · ·

Attempt 3:
• sort intervals by non-decreasing start times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I3

I2
I4

I1

I3
I2

I4
I1

• maybe, needs proof

23 / 25

A few attempts

Available colors:
· · ·

Attempt 3:
• sort intervals by non-decreasing start times
• for j = 1, . . . , n, use for Ij the smallest existing color (smallest index)

that creates no conflict, or a new color if needed
I3

I2
I4

I1

I3
I2

I4
I1

• maybe, needs proof

23 / 25

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer than k.

Proof
• suppose we color It with color k
• so It overlaps with k − 1 intervals, say Iα1 , . . . , Iαk−1 seen previously
• because we sorted by start time, for all j = 1, . . . , k − 1, sαj ≤ st < fαj

• so at time st, we can’t do with less than k colors

Remark: could also write a proof closer in spirit to the previous ones:
• T = [c1, . . . , cn] are the colors chosen by algorithm
• S = [d1, . . . , dn] is any other feasible choice
• prove that S uses more (or same) number of colors by transforming it into T

progressively

24 / 25

Correctness of the third attempt

Claim

Suppose the output uses k colors. Then, we cannot use fewer than k.

Proof
• suppose we color It with color k
• so It overlaps with k − 1 intervals, say Iα1 , . . . , Iαk−1 seen previously
• because we sorted by start time, for all j = 1, . . . , k − 1, sαj ≤ st < fαj

• so at time st, we can’t do with less than k colors

Remark: could also write a proof closer in spirit to the previous ones:
• T = [c1, . . . , cn] are the colors chosen by algorithm
• S = [d1, . . . , dn] is any other feasible choice
• prove that S uses more (or same) number of colors by transforming it into T

progressively
24 / 25

A Θ(n log n) implementation

Color
1. sort the array A = [[si, “start”, i]]1..n cat [[fi, “finish”, i]]1..n by time

(to break ties: finish comes before start)
2. C[1..n] ← array (of color indices)
3. H ← min-heap of available color indices, initially empty
4. k ← 0
5. for all entries of A (in increasing order)

if interval i starts, set C[i] = min element in H (if not empty) or ++k (if empty)
if interval i ends, insert C[i] in H

6. return C

Remark: picking any available color would work too.

25 / 25

