Lecture 5: Greedy I

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

September 21, 2023
Overview

- Greedy Algorithms
 - Greedy approach
 - Interval Scheduling
 - Interval Coloring
 - Minimizing Completion Time

- Acknowledgements
Going greedy

“I’m in it for the technology.”
Greedy Approach

- Greedy strategy based on following principles:
 1. choose a “progress measure”
 2. preprocess input accordingly
 3. make next decision based on what is best given current partial solution
 4. **Main idea:** must show that the greedy solution is always no worse than any other optimal solution!

 Usually can prove this by begin able to “transform” any optimal solution into the greedy one without losing anything.

 5. **Optimal Substructure:** a problem has optimal substructure if any optimal solution contains optimal solutions to subproblems.
Greedy Algorithms
- Greedy approach
- Interval Scheduling
- Interval Coloring
- Minimizing Completion Time

Acknowledgements
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals
- **Model:** word RAM model

How to go greedy?

1. pick interval with earliest starting time ($\min i s_i$)
2. pick interval with earliest finishing time ($\min i f_i$)
3. pick shortest interval ($\min i (f_i - s_i)$)
4. pick interval with minimum number of conflicts
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals

How to go greedy?

1. pick interval with *earliest* starting time $\min s_i$
2. pick interval with *earliest* finishing time $\min f_i$
3. pick *shortest* interval $\min f_i - s_i$
4. pick interval with *minimum* number of conflicts

What about strategy 2? Seems like this is good. How can we show this works?
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals

How to go greedy?

1. pick interval with *earliest* starting time \((\min s_i)\)
2. pick interval with *earliest* finishing time \((\min f_i)\)
3. pick *shortest* interval \((\min f_i - s_i)\)
4. pick interval with *minimum* number of conflicts

Approach 1 not good: earliest starting time can be very long
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals

How to go greedy?

1. pick interval with *earliest* starting time ($\min_i s_i$)
2. pick interval with *earliest* finishing time ($\min_i f_i$)
3. pick *shortest* interval ($\min_i f_i - s_i$)
4. pick interval with *minimum* number of conflicts

- Approach 3 not good: could have few short intervals
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals

How to go greedy?

1. pick interval with *earliest* starting time ($\min_i s_i$)
2. pick interval with *earliest* finishing time ($\min_i f_i$)
3. pick *shortest* interval ($\min_i (f_i - s_i)$)
4. pick interval with *minimum* number of conflicts

Approach 4 not good: picking minimum number of conflicts can block many good intervals
Interval Scheduling

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$
- **Output:** a *maximum* set of disjoint intervals

How to go greedy?

1. pick interval with *earliest* starting time ($\min_i s_i$)
2. pick interval with *earliest* finishing time ($\min_i f_i$)
3. pick *shortest* interval ($\min_i (f_i - s_i)$)
4. pick interval with *minimum* number of conflicts

What about strategy 2?

Seems like this is good. How can we show this works?
Earliest Finishing Time

Algorithm:
1. Sort intervals by finishing time, so we can assume $f_1 \leq f_2 \cdots \leq f_n$
2. Initial solution $S = \emptyset$, $k = 0$ and we set $f_0 = -\infty$
3. For $i \in [n]$:
 - If $s_i \geq f_k$, then set $k \leftarrow i$ and add $[s_i, f_i]$ to S
4. Return S

Correctness:

Claim 1: there is optimal solution with $[s_1, f_1]$

Let $[s_j^1, f_j^1], \ldots, [s_j^\ell, f_j^\ell]$ be optimal solution, with $f_j^1 \leq f_j^2 \leq \cdots \leq f_j^\ell$ since $f_1 \leq f_j^1 < s_j^2$, we have that $[s_1, f_1], \ldots, [s_j^\ell, f_j^\ell]$ also optimal

Claim 2: optimal solution for input $\{[s_i, f_i] : s_i > f_1\}$ together with $[s_1, f_1]$ is optimal solution to our problem

Same proof as the one above

Induction: if our greedy is optimal for sets of size $\leq n-1$, then it is optimal for any input of size n (proved in claim 2)

Running time: sorting then linear scan $\Rightarrow O(n \log n)$
Earliest Finishing Time

- **Algorithm:**
 1. Sort intervals by finishing time, so we can assume $f_1 \leq f_2 \cdots \leq f_n$
 2. Initial solution $S = \emptyset$, $k = 0$ and we set $f_0 = -\infty$
 3. For $i \in [n]$:
 - If $s_i \geq f_k$, then set $k \leftarrow i$ and add $[s_i, f_i]$ to S
 4. Return S

- **Correctness:**

 Idea: show that any (optimal) solution would do no worse by picking interval with earliest finishing time.

 Then induct!
Earliest Finishing Time

Algorithm:
1. Sort intervals by finishing time, so we can assume $f_1 \leq f_2 \cdots \leq f_n$
2. Initial solution $S = \emptyset$, $k = 0$ and we set $f_0 = -\infty$
3. For $i \in [n]$:
 - If $s_i \geq f_k$, then set $k \leftarrow i$ and add $[s_i, f_i]$ to S
4. Return S

Correctness:

Claim 1: there is optimal solution with $[s_1, f_1]$

- Let $[s_{j_1}, f_{j_1}], \ldots, [s_{j_{\ell}}, f_{j_{\ell}}]$ be optimal solution, with $f_{j_1} \leq f_{j_2} \leq \cdots \leq f_{j_{\ell}}$
- since $f_1 \leq f_{j_1} < s_{j_2}$, we have that $[s_1, f_1], \ldots, [s_{j_{\ell}}, f_{j_{\ell}}]$ also optimal
Earliest Finishing Time

Algorithm:
1. Sort intervals by finishing time, so we can assume $f_1 \leq f_2 \cdots \leq f_n$
2. Initial solution $S = \emptyset$, $k = 0$ and we set $f_0 = -\infty$
3. For $i \in [n]$:
 - If $s_i \geq f_k$, then set $k \leftarrow i$ and add $[s_i, f_i]$ to S
4. Return S

Correctness:
- **Claim 1:** there is optimal solution with $[s_1, f_1]$
 - Let $[s_{j_1}, f_{j_1}], \ldots, [s_{j_\ell}, f_{j_\ell}]$ be optimal solution, with $f_{j_1} \leq f_{j_2} \leq \cdots \leq f_{j_\ell}$
 - since $f_1 \leq f_{j_1} < s_{j_2}$, we have that $[s_1, f_1], \ldots, [s_{j_\ell}, f_{j_\ell}]$ also optimal
- **Claim 2:** optimal solution for input $\{[s_i, f_i] : s_i > f_1\}$ together with $[s_1, f_1]$ is optimal solution to our problem
 - Same proof as the one above
 - Note that greedy always “stays ahead”
Earliest Finishing Time

- **Algorithm:**
 1. Sort intervals by finishing time, so we can assume \(f_1 \leq f_2 \cdots \leq f_n \)
 2. Initial solution \(S = \emptyset \), \(k = 0 \) and we set \(f_0 = -\infty \)
 3. For \(i \in [n] \):
 - If \(s_i \geq f_k \), then set \(k \leftarrow i \) and add \([s_i, f_i]\) to \(S \)
 4. Return \(S \)

- **Correctness:**
 - **Claim 1:** there is optimal solution with \([s_1, f_1]\)
 - Let \([s_{j_1}, f_{j_1}], \ldots, [s_{j_\ell}, f_{j_\ell}]\) be optimal solution, with \(f_{j_1} \leq f_{j_2} \leq \cdots \leq f_{j_\ell} \)
 - since \(f_1 \leq f_{j_1} < s_{j_2} \), we have that \([s_1, f_1], \ldots, [s_{j_\ell}, f_{j_\ell}]\) also optimal
 - **Claim 2:** optimal solution for input \{\([s_i, f_i] \) : \(s_i > f_1 \)\} together with \([s_1, f_1]\) is optimal solution to our problem
 - Same proof as the one above
 - **Induction:** if our greedy is optimal for sets of size \(\leq n - 1 \), then it is optimal for any input of size \(n \) (proved in claim 2)

- Running time: sorting then linear scan \(\Rightarrow O(n \log n) \)
Earliest Finishing Time

- **Algorithm:**
 1. Sort intervals by finishing time, so we can assume \(f_1 \leq f_2 \cdot \cdot \cdot \leq f_n \)
 2. Initial solution \(S = \emptyset \), \(k = 0 \) and we set \(f_0 = -\infty \)
 3. For \(i \in [n] \):
 - If \(s_i \geq f_k \), then set \(k \leftarrow i \) and add \([s_i, f_i]\) to \(S \)
 4. Return \(S \)

- **Correctness:**
 - **Claim 1:** there is optimal solution with \([s_1, f_1]\)
 - Let \([s_{j_1}, f_{j_1}], \ldots, [s_{j_\ell}, f_{j_\ell}]\) be optimal solution, with \(f_{j_1} \leq f_{j_2} \leq \cdot \cdot \cdot \leq f_{j_\ell} \)
 - since \(f_1 \leq f_{j_1} < s_{j_2} \), we have that \([s_1, f_1], \ldots, [s_{j_\ell}, f_{j_\ell}]\) also optimal
 - **Claim 2:** optimal solution for input \(\{[s_i, f_i] : s_i > f_1\} \) together with \([s_1, f_1]\) is optimal solution to our problem
 - Same proof as the one above
 - **Induction:** if our greedy is optimal for sets of size \(\leq n - 1 \), then it is optimal for any input of size \(n \) (proved in claim 2)

- **Running time:** sorting then linear scan \(\Rightarrow O(n \log n) \)
- Greedy Algorithms
 - Greedy approach
 - Interval Scheduling
 - Interval Coloring
 - Minimizing Completion Time

- Acknowledgements
Interval colouring

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$

- **Output:** a *minimum* number of colours such that each interval gets one colour and we always colour *overlapping intervals* with *distinct* colours

- **Model:** word RAM model
Interval colouring

- **Input**: n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$

- **Output**: a *minimum* number of colours such that each interval gets one colour and we always colour overlapping intervals with distinct colours

one approach:

1. use previous problem to find maximum set of non-overlapping intervals
2. assign a colour to this set
3. recurse on the remaining intervals

Observation:

If there is a time t where k intervals overlap, then the minimum number of colours is $\geq k$

Is this only obstacle?
Interval colouring

Input: n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$

Output: a *minimum* number of colours such that each interval gets one colour and we always colour *overlapping intervals* with *distinct* colours

one approach:
1. use previous problem to find maximum set of non-overlapping intervals
2. assign a colour to this set
3. recurse on the remaining intervals

Exercise: show this won't work...
Interval colouring

- **Input:** n intervals (with integral endpoints) $[s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]$, where $s_i < f_i$

- **Output:** a *minimum* number of colours such that each interval gets one colour and we always colour *overlapping intervals* with *distinct* colours

one approach:

1. use previous problem to find maximum set of non-overlapping intervals
2. assign a colour to this set
3. recurse on the remaining intervals

Exercise: show this won't work...

Observation: if there is a time t where k intervals overlap, then the minimum number of colours is $\geq k$

Is this only obstacle?
Interval Colouring

- We will associate to each colour a natural number

Algorithm:

1. Sort intervals by start time, so that $s_1 \leq s_2 \leq \cdots \leq s_n$
2. Let A be a set of active intervals (i.e., whose finishing time “has not passed” yet). Initialize $A \leftarrow \emptyset$.
3. For $i \in [n]$
 - Update A by removing any interval $[s_j, f_j]$ with $f_j < s_i$
 - Use minimum available colour to colour interval i
 I.e., use minimum colour that was not assigned to an active interval.
4. Output colouring and number of colours used

Correctness:

must show that cannot use $k - 1$ colours. This follows from observation in previous slide, as greedy uses k colours \Rightarrow there is $i \in [n]$ such that length (A) after cleaning up (at the ith step) is $k - 1$, thus we must have k overlapping intervals.

Running time:

if we output k colours, then length of A is upper bounded by $k - 1$, so running time $O(n \cdot k) = O(n^2)$
Interval Colouring

- We will associate to each colour a natural number
- Algorithm:
 1. Sort intervals by start time, so that \(s_1 \leq s_2 \leq \cdots \leq s_n \)
 2. Let \(A \) be a set of active intervals (i.e., whose finishing time “has not passed” yet). Initialize \(A \leftarrow \{\} \).
 3. For \(i \in [n] \)
 - Update \(A \) by removing any interval \([s_j, f_j]\) with \(f_j < s_i \)
 - use minimum available colour to colour interval \(i \)
 I.e., use minimum colour that was not assigned to an active interval.
 4. output colouring and number of colours used
- Correctness: must show that cannot use \(k - 1 \) colours. This follows from observation in previous slide, as greedy uses \(k \) colours \(\Rightarrow \) there is \(i \in [n] \) such that \(\text{length}(A) \) after cleaning up (at the \(i^{\text{th}} \) step) is \(k - 1 \), thus we must have \(k \) overlapping intervals.
Interval Colouring

- We will associate to each colour a natural number

- **Algorithm:**
 1. Sort intervals by start time, so that \(s_1 \leq s_2 \leq \cdots \leq s_n \)
 2. Let \(A \) be a set of active intervals (i.e., whose finishing time “has not passed” yet). Initialize \(A \leftarrow \{\} \).
 3. For \(i \in [n] \)
 - Update \(A \) by removing any interval \([s_j, f_j]\) with \(f_j < s_i \)
 - use minimum available colour to colour interval \(i \)
 - I.e., use minimum colour that was not assigned to an active interval.
 4. output colouring and number of colours used

- **Correctness:** must show that cannot use \(k - 1 \) colours. This follows from observation in previous slide, as greedy uses \(k \) colours \(\Rightarrow \) there is \(i \in [n] \) such that \(\text{length}(A) \) after cleaning up (at the \(i^{th} \) step) is \(k - 1 \), thus we must have \(k \) overlapping intervals.

- **Running time:** if we output \(k \) colours, then length of \(A \) is upper bounded by \(k - 1 \), so running time \(O(n \cdot k) = O(n^2) \)
• **Greedy Algorithms**
 – Greedy approach
 – Interval Scheduling
 – Interval Coloring
 – Minimizing Completion Time

• **Acknowledgements**
Minimizing Completion Time

- **Input:** n tasks, with processing times $p_1, \ldots, p_n \in [n^{100}]$
- **Output:** an ordering of the tasks that minimizes total completion time
- **Model:** word RAM
- **Example:** given tasks with processing times 2, 3, 5, 11, if we schedule them in this order we get completion times: 2, 5, 10, 21, so total completion time is 38

Intuition: makes sense to schedule “faster/easier” tasks earlier

Turns out this greedy approach works!

Algorithm:
1. Sort tasks by processing times, so can assume $p_1 \leq \cdots \leq p_n$
2. Output the set $\{n\}$ (after the relabeling)

Correctness: if we output any other order p_{i_1}, \ldots, p_{i_n}, there is index $t \in [n-1]$ such that $i_t > i_{t+1}$ and thus $p_{i_t} \geq p_{i_{t+1}}$, so swapping these two tasks changes the total completion time by $p_{i_{t+1}} - p_{i_t} \leq 0$, so we are improving.

Running time: only sorted and output the reindexed set $\Rightarrow O(n \log n)$
Minimizing Completion Time

- **Input:** n tasks, with processing times $p_1, \ldots, p_n \in [n^{100}]$
- **Output:** an ordering of the tasks that minimizes total completion time
- **Intuition:** makes sense to schedule “faster/easier” tasks earlier
Minimizing Completion Time

- **Input:** n tasks, with processing times $p_1, \ldots, p_n \in [n^{100}]$
- **Output:** an ordering of the tasks that minimizes total completion time
- **Intuition:** makes sense to schedule “faster/easier” tasks earlier
- **Turns out this greedy approach works!**
Minimizing Completion Time

- **Input:** \(n \) tasks, with processing times \(p_1, \ldots, p_n \in [n^{100}] \)
- **Output:** an ordering of the tasks that minimizes total completion time
- **Intuition:** makes sense to schedule “faster/easier” tasks earlier
- Turns out this greedy approach works!
- **Algorithm:**
 1. Sort tasks by processing times, so can assume \(p_1 \leq \cdots \leq p_n \)
 2. Output the set \([n]\) (after the relabeling)

Correctness: if we output any other order \(p_{i_1}, \ldots, p_{i_n} \), there is index \(t \in [n-1] \) such that \(i_t > i_{t+1} \) and thus \(p_{i_t} \geq p_{i_t+1} \), so swapping these two tasks changes the total completion time by \(p_{i_t+1} - p_{i_t} \leq 0 \), so we are improving.

Running time: only sorted and output the reindexed set \(\Rightarrow O(n \log n) \)
Minimizing Completion Time

- **Input:** n tasks, with processing times $p_1, \ldots, p_n \in [n^{100}]$
- **Output:** an ordering of the tasks that minimizes total completion time
- **Intuition:** makes sense to schedule “faster/easier” tasks earlier
- **Turns out this greedy approach works!**
- **Algorithm:**
 1. Sort tasks by processing times, so can assume $p_1 \leq \cdots \leq p_n$
 2. Output the set $[n]$ (after the relabeling)
- **Correctness:** if we output any other order p_{i_1}, \ldots, p_{i_n}, there is index $t \in [n - 1]$ such that $i_t > i_{t+1}$ and thus $p_{i_t} \geq p_{i_{t+1}}$, so swapping these two tasks changes the total completion time by $p_{i_{t+1}} - p_{i_t} \leq 0$, so we are improving.

Running time: only sorted and output the reindexed set $\Rightarrow O(n \log n)$
Minimizing Completion Time

- **Input:** n tasks, with processing times $p_1, \ldots, p_n \in [n^{100}]$
- **Output:** an ordering of the tasks that minimizes total completion time
- **Intuition:** makes sense to schedule “faster/easier” tasks earlier
- **Turns out this greedy approach works!**
- **Algorithm:**
 1. Sort tasks by processing times, so can assume $p_1 \leq \cdots \leq p_n$
 2. Output the set $[n]$ (after the relabeling)
- **Correctness:** if we output any other order p_{i_1}, \ldots, p_{i_n}, there is index $t \in [n-1]$ such that $i_t > i_{t+1}$ and thus $p_{i_t} \geq p_{i_{t+1}}$, so swapping these two tasks changes the total completion time by $p_{i_{t+1}} - p_{i_t} \leq 0$, so we are improving.
- **Running time:** only sorted and output the reindexed set $\Rightarrow O(n \log n)$
Fancier Completion Time

Input: n tasks, with processing times and release times $(p_1, r_1), \ldots, (p_n, r_n) \in [n^{100}]^2$

Output: an ordering of the tasks that minimizes total completion time.

Constraints & capabilities: Now, task i can only be scheduled from time r_i onwards, and we also allow *preemption*, that is, we can suspend a task and resume it at a later given time.

Model: word RAM
Acknowledgement

- Based on Prof Lau’s Lecture 8
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L08.pdf
- Also on [CLRS 2009, Chapter 16]
References I

MIT Press