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Minimizing lateness
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The problem

Input:
• jobs J1, . . . , Jn with processing times t(1), . . . , t(n) and deadlines d(1), . . . , d(n)
• can only do one thing at a time

Output:
• a scheduling of the jobs which minimizes maximal lateness
• job Ji starts at time s(i) (TBD) and finishes at f(i) = s(i) + t(i)
• if f(i) ≥ d(i), lateness ℓ(i) = f(i) − d(i), otherwise 0

• maximal lateness = maxi ℓ(i)
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Example: 3 jobs

• prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
• write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
• bake a panettone: need t(3) = 10 hours, deadline d(3) = 24 hours

• 1, then 2, then 3: latenesses [2, 9, 0]
• 2, then 1, then 3: latenesses [8, 5, 0] (optimal)
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No breaks

Observation:
• if a scheduling has idle time, we can improve it by removing the breaks

• so the optimal has no idle time, and is given by a permutation of [1, . . . , n]
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A few attempts
Attempt 1:
• do short jobs first

• no, last example

Attempt 2:
• do jobs with little slack first slack = d(i)− t(i)
• no

take t(1) = 8, d(1) = 10 so s(1) = 2 and t(1) = 2, d(2) = 5 so s(2) = 3

Attempt 3:
• do jobs in non-decreasing deadline order
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Non-uniqueness
Observation:
• if d(i) = d(j), the orderings [. . . , i, j, . . . ] and [. . . , j, i, . . . ] have the same

max-lateness (because the second job is the latest)

i

i

j

j

di = dj

• so all orderings in non-decreasing deadline order have the same max-lateness
Definition:
• take a permutation L = [e1, . . . , en] of [1, . . . , n]
• inversion: a pair (i, j) with i < j and d(ei) > d(ej)

(= an inversion in [d(e1), . . . , d(en)] in the sense of lecture 3)
• no inversion ⇐⇒ L in non-decreasing deadline order
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Correctness: exchange argument

• let L = [e1, . . . , en] be any permutation of [1, . . . , n]
• suppose that L is not in non-decreasing order of deadlines
• want: max lateness(L) ≥ max lateness(Lgreedy)
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• the lateness of ei+1 cannot increase (because we do ei+1 earlier than before), so at

most max lateness(L)
• the new lateness of ei is at most the old lateness of ei+1, so at most max lateness(L)
• nothing else changes, so max lateness(L′) ≤ max lateness(L)
• we removed an inversion
• keep going: after at most n(n− 1)/2 iterations, we have Lord with no inversion and

such that max lateness(Lord) ≤ max lateness(L)
• we saw that max lateness(Lord) = max lateness(Lgreedy)
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Fractional knapsack
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The problem
Input:
• items I1, . . . , In with weights w1, . . . , wn and positive values v1, . . . , vn

• a capacity W

Output:
• fractions E = e1, . . . , en such that

• 0 ≤ ej ≤ 1 for all j
• e1w1 + · · ·+ enwn ≤W
• e1v1 + · · ·+ envn maximal

Example:
• w1 = 10, v1 = 60, w2 = 30, v2 = 90, w3 = 20, v3 = 100
• W = 50
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• e1v1 + · · ·+ envn maximal

Example:
• w1 = 10, v1 = 60, w2 = 30, v2 = 90, w3 = 20, v3 = 100
• W = 50
• optimal is e1 = 1, e2 = 2/3, e3 = 1, total value 220
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The problem
Input:
• items I1, . . . , In with weights w1, . . . , wn and positive values v1, . . . , vn

• a capacity W

Output:
• fractions E = e1, . . . , en such that

• 0 ≤ ej ≤ 1 for all j
• e1w1 + · · ·+ enwn ≤W
• e1v1 + · · ·+ envn maximal

Remark:
• 0/1-version: ej ∈ {0, 1} for all j

• dynamic programming
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The knapsack should be full

Remark:
• if

∑
i wi < W , just take all ei = 1

• so assume
∑

i wi ≥ W

Observation:
• suppose we have an assignment with

∑
i eiwi < W

• then some ei must be less than 1
• so we can increase the value by increasing this ei

Consequence:
• it is enough to consider assignments with

∑
i eiwi = W
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A few attempts

Attempt 1:
• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:
• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 100, w2 = 5, v2 = 1

Attempt 3:
• pack with items in non-increasing “value per kilo” vi/wi

• first example [6, 3, 5], second example [10, 1/5]
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Pseudo-code

GreedyKnapsack(v, w, W )
1. E ← [0, . . . , 0]
2. sort items by non-increasing order of vi/wi

3. for k = 1, . . . , n do
4. if wk < W then
5. E[k]← 1
6. W ←W − wk

7. else
8. E[k]←W/wk

9. return

Remark: output is S = [1, . . . , 1, ek, 0, . . . , 0]

Runtime: O(n log(n))
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Correctness: exchange argument
• let E = [e1, . . . , en] be the output, with

∑
eiwi = W

• let S = [s1, . . . , sn] be any assignment, with
∑

siwi = W

• assume that S ̸= E, want value(E) ≥ value(S)

• let i be the first index with ei ̸= si

• greedy strategy: ei > si

• because their weights are the same, there is j > i with sj > ej

• set s′
i = si + α/wi and s′

j = sj − α/wj , for α TBD > 0, all other s′
k = sk

• in any case,
∑

s′
iwi = W and value(S′) ≥ value(S)

• choose the first α such that either s′
i = ei or s′

j = ej

α = min(wi(ei − si), wj(sj − ej))

• we found S′ with one more common entry with E, and value(S′) ≥ value(S)
• if S′ ̸= E, repeat, . . . , until S

′′′′··· = E
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