CS 341: Algorithms

Lecture 6: Greedy algorithms, continued

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Minimizing lateness

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Output:

- $\bullet\,$ a scheduling of the jobs which minimizes maximal lateness
 - job J_i starts at time s(i) (TBD) and finishes at f(i) = s(i) + t(i)
 - if $f(i) \ge d(i)$, lateness $\ell(i) = f(i) d(i)$, otherwise 0
- maximal lateness = $\max_i \ell(i)$

Example: 3 jobs

- prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
- write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
- bake a panettone: need t(3) = 10 hours, deadline d(3) = 24 hours

Example: 3 jobs

- prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
- write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
- bake a panettone: need t(3) = 10 hours, deadline d(3) = 24 hours

- 1, then 2, then 3: latenesses [2,9,0]
- 2, then 1, then 3: latenesses [8, 5, 0] (optimal)

No breaks

Observation:

• if a scheduling has **idle time**, we can improve it by removing the breaks

• so the optimal has no idle time, and is given by a **permutation** of $[1, \ldots, n]$

Attempt 1:

• do short jobs first

Attempt 1:

- do short jobs first
- $\bullet\,$ no, last example

Attempt 1:

- do short jobs first
- $\bullet\,$ no, last example

Attempt 2:

• do jobs with little slack first

slack = d(i) - t(i)

Attempt 1:

- do short jobs first
- $\bullet\,$ no, last example

Attempt 2:

• do jobs with little slack first

slack = d(i) - t(i)

• no

take t(1) = 8, d(1) = 10 so s(1) = 2 and t(1) = 2, d(2) = 5 so s(2) = 3

Attempt 1:

- do short jobs first
- $\bullet\,$ no, last example

Attempt 2:

- do jobs with little slack first
- no

take t(1) = 8, d(1) = 10 so s(1) = 2 and t(1) = 2, d(2) = 5 so s(2) = 3

slack = d(i) - t(i)

Attempt 1:

- do short jobs first
- $\bullet\,$ no, last example

Attempt 2:

- do jobs with little slack first
- no

take
$$t(1) = 8$$
, $d(1) = 10$ so $s(1) = 2$ and $t(1) = 2$, $d(2) = 5$ so $s(2) = 3$

Attempt 3:

• do jobs in non-decreasing deadline order

slack = d(i) - t(i)

Non-uniqueness

Observation:

• if d(i) = d(j), the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)

Non-uniqueness

Observation:

if d(i) = d(j), the orderings [..., i, j, ...] and [..., j, i, ...] have the same max-lateness (because the second job is the latest)

• so all orderings in non-decreasing deadline order have the same max-lateness

Non-uniqueness

Observation:

• if d(i) = d(j), the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)

• so all orderings in non-decreasing deadline order have the same max-lateness

Definition:

- take a permutation $L = [e_1, \ldots, e_n]$ of $[1, \ldots, n]$
- inversion: a pair (i, j) with i < j and $d(e_i) > d(e_j)$
 - (= an inversion in $[d(e_1), \ldots, d(e_n)]$ in the sense of lecture 3)
- no inversion $\iff L$ in non-decreasing deadline order

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of deadlines
- want: $\max_lateness(L) \ge \max_lateness(L_{greedy})$

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of deadlines
- want: $\max_lateness(L) \ge \max_lateness(L_{greedy})$
- there exists i such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L'. What about max_lateness(L')?

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of deadlines
- want: $\max_lateness(L) \ge \max_lateness(L_{greedy})$
- there exists i such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L'. What about max_lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max_lateness(L)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max_lateness(L)

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of deadlines
- want: $\max_lateness(L) \ge \max_lateness(L_{greedy})$
- there exists i such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L'. What about max_lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max_lateness(L)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max_lateness(L)
- nothing else changes, so max_lateness(L') \leq max_lateness(L)

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of deadlines
- want: $\max_lateness(L) \ge \max_lateness(L_{greedy})$
- there exists *i* such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L'. What about max_lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max_lateness(L)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max_lateness(L)
- nothing else changes, so max_lateness(L') \leq max_lateness(L)
- we removed an inversion
- keep going: after at most n(n-1)/2 iterations, we have L_{ord} with **no inversion** and such that $\max_lateness(L_{\text{ord}}) \leq \max_lateness(L)$
- we saw that $\max_lateness(L_{ord}) = \max_lateness(L_{greedy})$

Fractional knapsack

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity W

Output:

- fractions $E = e_1, \ldots, e_n$ such that
 - $0 \le e_j \le 1$ for all j
 - $e_1w_1 + \dots + e_nw_n \le W$
 - $e_1v_1 + \dots + e_nv_n$ maximal

Example:

- $w_1 = 10, v_1 = 60, w_2 = 30, v_2 = 90, w_3 = 20, v_3 = 100$
- W = 50

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity W

Output:

- fractions $E = e_1, \ldots, e_n$ such that
 - $0 \le e_j \le 1$ for all j
 - $e_1w_1 + \dots + e_nw_n \le W$
 - $e_1v_1 + \cdots + e_nv_n$ maximal

Example:

- $w_1 = 10, v_1 = 60, w_2 = 30, v_2 = 90, w_3 = 20, v_3 = 100$
- W = 50
- optimal is $e_1 = 1, e_2 = 2/3, e_3 = 1$, total value 220

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity W

Output:

- fractions $E = e_1, \ldots, e_n$ such that
 - $0 \le e_j \le 1$ for all j
 - $e_1w_1 + \dots + e_nw_n \le W$
 - $e_1v_1 + \dots + e_nv_n$ maximal

Remark:

- 0/1-version: $e_j \in \{0, 1\}$ for all j
- dynamic programming

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_i w_i \ge W$

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_i w_i \ge W$

Observation:

- suppose we have an assignment with $\sum_i e_i w_i < W$
- then some e_i must be less than 1
- so we can increase the value by increasing this e_i

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_i w_i \ge W$

Observation:

- suppose we have an assignment with $\sum_i e_i w_i < W$
- then some e_i must be less than 1
- so we can increase the value by increasing this e_i

Consequence:

• it is enough to consider assignments with $\sum_i e_i w_i = W$

Attempt 1:

• pack with items in decreasing value v_i

Attempt 1:

- pack with items in decreasing value v_i
- no, previous example (we get [0, 1, 1] with total value **190**)

Attempt 1:

- pack with items in decreasing value v_i
- no, previous example (we get [0, 1, 1] with total value **190**)

Attempt 2:

• pack with items in increasing weight w_i

Attempt 1:

- pack with items in decreasing value v_i
- no, previous example (we get [0, 1, 1] with total value **190**)

Attempt 2:

- pack with items in increasing weight w_i
- no: $W = 10, w_1 = 10, v_1 = 100, w_2 = 5, v_2 = 1$

Attempt 1:

- pack with items in **decreasing value** v_i
- no, previous example (we get [0, 1, 1] with total value **190**)

Attempt 2:

- pack with items in increasing weight w_i
- no: $W = 10, w_1 = 10, v_1 = 100, w_2 = 5, v_2 = 1$

Attempt 3:

- pack with items in non-increasing "value per kilo" v_i/w_i
- first example [6, 3, 5], second example [10, 1/5]

Pseudo-code

GreedyKnapsack(v, w, W)1. $E \leftarrow [0, \ldots, 0]$ sort items by non-increasing order of v_i/w_i 2.for $k = 1, \ldots, n$ do 3. if $w_k < W$ then 4. $E[k] \leftarrow 1$ 5. $W \leftarrow W - w_k$ 6. \mathbf{else} 7. $E[k] \leftarrow W/w_k$ 8. 9. return

Remark: output is $S = [1, \ldots, 1, e_k, 0, \ldots, 0]$ **Runtime:** $O(n \log(n))$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want $value(E) \geq value(S)$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want $value(E) \geq value(S)$
- let *i* be the **first** index with $e_i \neq s_i$
- greedy strategy: $e_i > s_i$
- because their weights are the same, there is j > i with $s_j > e_j$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want $value(E) \geq value(S)$
- let *i* be the **first** index with $e_i \neq s_i$
- greedy strategy: $e_i > s_i$
- because their weights are the same, there is j > i with $s_j > e_j$
- set $s'_i = s_i + \alpha/w_i$ and $s'_j = s_j \alpha/w_j$, for α TBD > 0, all other $s'_k = s_k$
- in any case, $\sum s'_i w_i = W$ and $\text{value}(S') \ge \text{value}(S)$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want $value(E) \geq value(S)$
- let *i* be the first index with $e_i \neq s_i$
- greedy strategy: $e_i > s_i$
- because their weights are the same, there is j > i with $s_j > e_j$
- set $s'_i = s_i + \alpha/w_i$ and $s'_j = s_j \alpha/w_j$, for α TBD > 0, all other $s'_k = s_k$
- in any case, $\sum s'_i w_i = W$ and $\text{value}(S') \ge \text{value}(S)$
- choose the first lpha such that either $s_i'=e_i$ or $s_j'=e_j$

$$\alpha = \min(w_i(e_i - s_i), w_j(s_j - e_j))$$

we found S' with one more common entry with E, and value(S') ≥ value(S)
if S' ≠ E, repeat, ..., until S'''... = E