CS 341: Algorithms

Lecture 6: Greedy algorithms, continued

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Minimizing lateness

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Output:

- a **scheduling** of the jobs which **minimizes maximal lateness**
	- job J_i starts at time $s(i)$ (TBD) and finishes at $f(i) = s(i) + t(i)$
	- if $f(i) \geq d(i)$, lateness $\ell(i) = f(i) d(i)$, otherwise 0
- maximal lateness = $\max_i \ell(i)$

Example: 3 jobs

- **prepare my slides:** need $t(1) = 4$ hours, deadline $d(1) = 2$ hours
- write solutions to assignments: need $t(2) = 6$ hours, deadline $d(2) = 1$ hour
- **bake a panettone:** need $t(3) = 10$ hours, deadline $d(3) = 24$ hours

Example: 3 jobs

- **prepare my slides:** need $t(1) = 4$ hours, deadline $d(1) = 2$ hours
- write solutions to assignments: need $t(2) = 6$ hours, deadline $d(2) = 1$ hour
- **bake a panettone:** need $t(3) = 10$ hours, deadline $d(3) = 24$ hours

- **1, then 2, then 3:** latenesses [2*,* 9*,* 0]
- **2, then 1, then 3:** latenesses [8*,* 5*,* 0] (optimal)

No breaks

Observation:

• if a scheduling has **idle time**, we can improve it by removing the breaks

• so the optimal has no idle time, and is given by a **permutation** of $[1, \ldots, n]$

Attempt 1:

• do short jobs first

Attempt 1:

- do short jobs first
- **no**, last example

Attempt 1:

- do short jobs first
- **no**, last example

Attempt 2:

• do jobs with little slack first slack = $d(i) - t(i)$

Attempt 1:

- do short jobs first
- **no**, last example

Attempt 2:

- do jobs with little slack first slack $= d(i) t(i)$
	-

• **no**

take $t(1) = 8$, $d(1) = 10$ so $s(1) = 2$ and $t(1) = 2$, $d(2) = 5$ so $s(2) = 3$

Attempt 1:

- do short jobs first
- **no**, last example

Attempt 2:

- do jobs with little slack first slack $= d(i) t(i)$
- **no**

take $t(1) = 8$, $d(1) = 10$ so $s(1) = 2$ and $t(1) = 2$, $d(2) = 5$ so $s(2) = 3$

Attempt 1:

- do short jobs first
- **no**, last example

Attempt 2:

- do jobs with little slack first slack $= d(i) t(i)$
- **no**

take
$$
t(1) = 8
$$
, $d(1) = 10$ so $s(1) = 2$ and $t(1) = 2$, $d(2) = 5$ so $s(2) = 3$

\nOutput

Attempt 3:

• do jobs in non-decreasing deadline order

Non-uniqueness

Observation:

• if $d(i) = d(j)$, the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)

Non-uniqueness

Observation:

• if $d(i) = d(j)$, the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)

• so **all** orderings in non-decreasing deadline order have the same max-lateness

Non-uniqueness

Observation:

• if $d(i) = d(j)$, the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)

• so **all** orderings in non-decreasing deadline order have the same max-lateness

Definition:

- take a permutation $L = [e_1, \ldots, e_n]$ of $[1, \ldots, n]$
- **inversion**: a pair (i, j) with $i < j$ and $d(e_i) > d(e_j)$
	- $(=$ an inversion in $[d(e_1), \ldots, d(e_n)]$ in the sense of lecture 3)
- no inversion \iff *L* in non-decreasing deadline order

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of deadlines
- want: \max **lateness**(L) > \max **lateness**(L_{greedy})

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of deadlines
- want: \max **lateness**(L) > \max **lateness**(L_{greedy})
- there exists *i* such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L' . What about max lateness(L')?

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of deadlines
- want: \max **lateness**(L) > \max **lateness**(L_{greedy})
- there exists *i* such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L' . What about max lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max lateness(*L*)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max lateness(*L*)

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of deadlines
- want: \max **lateness**(L) > \max **lateness**(L_{greedy})
- there exists *i* such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L' . What about max lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max lateness(*L*)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max lateness(*L*)
- nothing else changes, so max lateness $(L') \leq$ max lateness (L)

- let $L = [e_1, \ldots, e_n]$ be any permutation of $[1, \ldots, n]$
- suppose that *L* is **not** in non-decreasing order of deadlines
- want: \max **lateness**(L) > \max **lateness**(L_{greedy})
- there exists *i* such that $d(e_i) > d(e_{i+1})$.
- now, swap e_i and e_{i+1} to get a permutation L' . What about max lateness(L')?
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max lateness(*L*)
- the **new** lateness of e_i is at most the old lateness of e_{i+1} , so at most max lateness(*L*)
- nothing else changes, so max lateness $(L') \leq$ max lateness (L)
- we removed an inversion
- keep going: after at most $n(n-1)/2$ iterations, we have L_{ord} with **no inversion** and such that \max **lateness** $(L_{\text{ord}}) \leq \max$ **lateness** (L)
- we saw that **max** lateness(L_{ord}) = **max** lateness(L_{greedy})

Fractional knapsack

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity *W*

Output:

- **fractions** $E = e_1, \ldots, e_n$ such that
	- $0 \leq e_j \leq 1$ for all *j*
	- $e_1w_1 + \cdots + e_nw_n \leq W$
	- $e_1v_1 + \cdots + e_nv_n$ maximal

Example:

- \bullet $w_1 = 10, v_1 = 60, w_2 = 30, v_2 = 90, w_3 = 20, v_3 = 100$
- \bullet $W = 50$

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity *W*

Output:

- **fractions** $E = e_1, \ldots, e_n$ such that
	- $0 \leq e_j \leq 1$ for all *j*
	- $e_1w_1 + \cdots + e_nw_n \leq W$
	- $e_1v_1 + \cdots + e_nv_n$ maximal

Example:

- \bullet $w_1 = 10, v_1 = 60, w_2 = 30, v_2 = 90, w_3 = 20, v_3 = 100$
- \bullet $W = 50$
- optimal is $e_1 = 1$, $e_2 = 2/3$, $e_3 = 1$, total value 220

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity *W*

Output:

- **fractions** $E = e_1, \ldots, e_n$ such that
	- $0 \leq e_j \leq 1$ for all *j*
	- $e_1w_1 + \cdots + e_nw_n \leq W$
	- $e_1v_1 + \cdots + e_nv_n$ maximal

Remark:

- 0/1-version: $e_i \in \{0, 1\}$ for all *j*
- dynamic programming

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- \bullet so assume $\sum_i w_i \geq W$

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- \bullet so assume $\sum_i w_i \geq W$

Observation:

- \bullet suppose we have an assignment with $\sum_i e_i w_i < W$
- then some *eⁱ* must be **less than** 1
- so we can increase the value by increasing this *eⁱ*

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- \bullet so assume $\sum_i w_i \geq W$

Observation:

- \bullet suppose we have an assignment with $\sum_i e_i w_i < W$
- then some *eⁱ* must be **less than** 1
- so we can increase the value by increasing this *eⁱ*

Consequence:

• it is enough to consider assignments with $\sum_i e_i w_i = W$

Attempt 1:

• pack with items in **decreasing value** *vⁱ*

Attempt 1:

- pack with items in **decreasing value** *vⁱ*
- **no**, previous example (we get [0*,* 1*,* 1] with total value **190**)

Attempt 1:

- pack with items in **decreasing value** *vⁱ*
- **no**, previous example (we get [0*,* 1*,* 1] with total value **190**)

Attempt 2:

• pack with items in **increasing weight** *wⁱ*

Attempt 1:

- pack with items in **decreasing value** *vⁱ*
- **no**, previous example (we get [0*,* 1*,* 1] with total value **190**)

Attempt 2:

- pack with items in **increasing weight** *wⁱ*
- **no**: $W = 10$, $w_1 = 10$, $v_1 = 100$, $w_2 = 5$, $v_2 = 1$

Attempt 1:

- pack with items in **decreasing value** *vⁱ*
- **no**, previous example (we get [0*,* 1*,* 1] with total value **190**)

Attempt 2:

- pack with items in **increasing weight** *wⁱ*
- **no**: $W = 10$, $w_1 = 10$, $v_1 = 100$, $w_2 = 5$, $v_2 = 1$

Attempt 3:

- pack with items in **non-increasing "value per kilo"** v_i/w_i
- first example **[6***,* **3***,* **5]**, second example **[10***,* **1***/***5]**

Pseudo-code

GreedyKnapsack(*v, w, W*) 1. $E \leftarrow [0, \ldots, 0]$ 2. sort items by non-increasing order of v_i/w_i
3. **for** $k = 1, ..., n$ **do** f **or** $k = 1, \ldots, n$ **do** 4. **if** $w_k < W$ **then**
5. $E[k] \leftarrow 1$ $E[k] \leftarrow 1$ 6. $W \leftarrow W - w_k$ 7. **else** 8. $E[k] \leftarrow W/w_k$ 9. **return**

Remark: output is $S = [1, \ldots, 1, e_k, 0, \ldots, 0]$ **Runtime:** $O(n \log(n))$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want **value** (E) **> value** (S)

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want **value** (E) **> value** (S)
- let *i* be the **first** index with $e_i \neq s_i$
- greedy strategy: *eⁱ > sⁱ*
- because their weights are the same, there is $j > i$ with $s_i > e_j$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want **value** (E) **> value** (S)
- let *i* be the **first** index with $e_i \neq s_i$
- greedy strategy: *eⁱ > sⁱ*
- because their weights are the same, there is $j > i$ with $s_i > e_j$
- set $s_i' = s_i + \alpha/w_i$ and $s_j' = s_j \alpha/w_j$, for α TBD > 0, all other $s_k' = s_k$
- in any case, $\sum s_i' w_i = W$ and $value(S') \ge value(S)$

- let $E = [e_1, \ldots, e_n]$ be the **output**, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- assume that $S \neq E$, want **value** (E) **> value** (S)
- let *i* be the **first** index with $e_i \neq s_i$
- greedy strategy: *eⁱ > sⁱ*
- because their weights are the same, there is $j > i$ with $s_i > e_j$
- set $s_i' = s_i + \alpha/w_i$ and $s_j' = s_j \alpha/w_j$, for α TBD > 0, all other $s_k' = s_k$
- in any case, $\sum s_i' w_i = W$ and $value(S') \ge value(S)$
- choose the first α such that either $s_i' = e_i$ or $s_j' = e_j$

$$
\alpha = \min(w_i(e_i - s_i), w_j(s_j - e_j))
$$

- we found S' with one more common entry with E , and $value(S') \ge value(S)$
- if $S' \neq E$, repeat, ..., until $S^{'''' \cdots} = E$