
CS 341: Algorithms

Lecture 7: Dynamic programming

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 18



Goals

This module: the dynamic programming paradigm through examples
• weighted interval scheduling, knapsack, longest increasing subsequence, longest

common subsequence, etc

Computational model:
• word RAM
• assume all weights, values, capacities, deadlines, etc, fit in a word

What about the name?
• programming as in decision making
• dynamic because it sounds cool.

2 / 18



Warmup example: Fibonacci numbers

3 / 18



A slow recursive algorithm
Def: Fibonacci numbers
• F0 = 0, F1 = 1
• Fn = Fn−1 + Fn−2 for n ≥ 2

Fib(n)
1. if n = 0 return 0
2. if n = 1 return 1
3. return Fib(n− 1) + Fib(n− 2)

Assuming we count additions at unit cost, runtime is

T (0) = T (1) = 0, T (n) = T (n− 1) + T (n− 2) + 1

This gives T (n) = F (n + 1) − 1, so T (n) ∈ Θ(φn), φ = (1 +
√

5)/2.
4 / 18



A better algorithm
Observations
• to compute Fn, we need the values of F0, . . . , Fn−1
• the algorithm recomputes them many, many times

5 / 18



A better algorithm
Observations
• to compute Fn, we need the values of F0, . . . , Fn−1
• the algorithm recomputes them many, many times

Improved recursive algorithm

let T = [0, 1, •, •, . . . ] be a global array
Fib(n)
1. if T [n] = •
2. T [n] = Fib(n− 1) + Fib(n− 2)
3. return T [n]

5 / 18



A better algorithm
Observations
• to compute Fn, we need the values of F0, . . . , Fn−1
• the algorithm recomputes them many, many times

Iterative version

Fib(n)
1. let T = [0, 1, •, •, . . . ]
2. for i = 2, . . . , n
3. T [i] = T [i− 1] + T [i− 2]
4. return T [n]

5 / 18



A better algorithm
Observations
• to compute Fn, we need the values of F0, . . . , Fn−1
• the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)
1. (u, v)← (0, 1)
2. for i = 2, . . . , n
3. (u, v)← (v, u + v)
4. return v

5 / 18



A better algorithm
Observations
• to compute Fn, we need the values of F0, . . . , Fn−1
• the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)
1. (u, v)← (0, 1)
2. for i = 2, . . . , n
3. (u, v)← (v, u + v)
4. return v

All these improved versions use Θ(n) additions

Main feature: solve “subproblems” bottom up, and store solutions if needed.

5 / 18



Dynamic programming

Key features
• solve problems through recursion
• use a small (polynomial) number of nested subproblems
• may have to store results for all subproblems
• can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer
• dynamic programming usually deals with all input sizes 1, . . . , n

• DAC may not solve “subproblems”
• DAC algorithms not always easy to rewrite iteratively

6 / 18



Recipe

• Identify subproblems and (typically) store their solutions in an array.
Need to know:
• dimensions of the array
• what precisely the array stores
• where the answer will be found

• Establish recurrence
• how do small subproblems contribute to the solution of a larger one?

• Find the base case(s)

• Specify the order of computation

• Recovery of the solution
• traceback strategy to determine the final solution

7 / 18



Weighted interval scheduling

8 / 18



The Problem
Input:
• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time
• each interval has a weight wi

Output:
• a choice T of intervals that do not overlap and maximizes

∑
i∈T wi

• greedy algorithm in the case wi = 1

Example: A car rental company has the following requests for a given day:
• I1 = [2, 8], w1 = 6
• I2 = [2, 4], w2 = 2
• I3 = [5, 6], w3 = 1
• I4 = [7, 9], w4 = 2

Answer is T = [I1], W = 6
9 / 18



Sketch of the algorithm

Basic idea: either we choose In or not.
• then the optimum O(I1, . . . , In) is the max of two values:
• wn + O(Im1, . . . , Ims), if we choose In, where Im1 , . . . , Ims are the intervals that do

not overlap with In

• O(I1, . . . , In−1), if we don’t choose In

In general, we don’t know what Im1 , . . . , Ims look like.

Goal:
• find a way to ensure that Im1 , . . . , Ims are of the form I1, . . . , Is, for some s < n

(and so on for all indices < n)
• then it suffices to optimize over all I1, . . . , Ij , j = 1, . . . , n

10 / 18



Sketch of the algorithm

Basic idea: either we choose In or not.
• then the optimum O(I1, . . . , In) is the max of two values:
• wn + O(Im1, . . . , Ims), if we choose In, where Im1 , . . . , Ims are the intervals that do

not overlap with In

• O(I1, . . . , In−1), if we don’t choose In

In general, we don’t know what Im1 , . . . , Ims look like.

Goal:
• find a way to ensure that Im1 , . . . , Ims are of the form I1, . . . , Is, for some s < n

(and so on for all indices < n)
• then it suffices to optimize over all I1, . . . , Ij , j = 1, . . . , n

10 / 18



The indices pj

Assume I1, . . . , In sorted by increasing end time: fi ≤ fi+1

Claim: for all j, the set of intervals Ik ≤ Ij that do not overlap Ij is of the form
I1, . . . , Ipj for some 0 ≤ pj < j (pj = 0 if no such interval)

The algorithm will need the pj ’s.
• for a given j, find where sj would be in [f1, . . . , fn]
• precisely: pj is the last index i such that fi ≤ sj

• binary search, so O(n log(n)) total.

Note: still OK if repeated fi’s

11 / 18



The indices pj

Assume I1, . . . , In sorted by increasing end time: fi ≤ fi+1

Claim: for all j, the set of intervals Ik ≤ Ij that do not overlap Ij is of the form
I1, . . . , Ipj for some 0 ≤ pj < j (pj = 0 if no such interval)

The algorithm will need the pj ’s.
• for a given j, find where sj would be in [f1, . . . , fn]
• precisely: pj is the last index i such that fi ≤ sj

• binary search, so O(n log(n)) total.

Note: still OK if repeated fi’s

11 / 18



Main procedure

Definition: M [j] is the maximal weight we can get with intervals I1, . . . , Ij

Recurrence: M [0] = 0 and for j ≥ 1

M [j] = max(M [j − 1], M [pj] + wj)

Runtime: Θ(n log(n)) (sorting, pj ’s) and Θ(n) (finding the M [j]’s)

Exercise

recover the optimum set, not only M [n], for extra Θ(n)

12 / 18



0/1 knapsack

13 / 18



The Problem
Input:
• items 1, . . . , n with weights w1, . . . , wn and values v1, . . . , vn

• a capacity W

Output:
• a choice of items S ⊂ {1, . . . , n}
• that satisfies the constraint

∑
i∈S wi ≤W

• and maximizes the value
∑

i∈S vi

Example:
• w1 = 3, w2 = 4, w3 = 6, w4 = 5
• v1 = 2, v2 = 3, v3 = 1, v4 = 5
• W = 8
• optimum S = {1, 4} with weight 8 and value 7

See also:
• fractional knapsack (items can be divided), solved with a greedy algorithm

14 / 18



The Problem
Input:
• items 1, . . . , n with weights w1, . . . , wn and values v1, . . . , vn

• a capacity W

Output:
• a choice of items S ⊂ {1, . . . , n}
• that satisfies the constraint

∑
i∈S wi ≤W

• and maximizes the value
∑

i∈S vi

Example:
• w1 = 3, w2 = 4, w3 = 6, w4 = 5
• v1 = 2, v2 = 3, v3 = 1, v4 = 5
• W = 8
• optimum S = {1, 4} with weight 8 and value 7

See also:
• fractional knapsack (items can be divided), solved with a greedy algorithm

14 / 18



The Problem
Input:
• items 1, . . . , n with weights w1, . . . , wn and values v1, . . . , vn

• a capacity W

Output:
• a choice of items S ⊂ {1, . . . , n}
• that satisfies the constraint

∑
i∈S wi ≤W

• and maximizes the value
∑

i∈S vi

Example:
• w1 = 3, w2 = 4, w3 = 6, w4 = 5
• v1 = 2, v2 = 3, v3 = 1, v4 = 5
• W = 8
• optimum S = {1, 4} with weight 8 and value 7

See also:
• fractional knapsack (items can be divided), solved with a greedy algorithm

14 / 18



Setting up the recurrence

Set O[w, i] := maximum value achievable using a knapsack of capacity w, items 1, . . . , i

Want: O[W, n]

Basic idea: either we choose item n or not.
• then the optimum O[W, n] is the max of two values:
• vn + O[W − wn, n − 1], if we choose n (requires wn ≤W )
• O[W, n − 1], if we don’t choose n

Initial conditions
• O[0, i] = 0 for any i

• O[w, 0] = 0 for any w

15 / 18



Algorithm

01KnapSack(v1, . . . , vn, w1, . . . , wn, W )
1. initialize an array O[0..W, 0..n]
2. with all O[0, j] = 0 and all O[w, 0] = 0
3. for i = 1, . . . , n
4. for w = 1, . . . , W
5. if wi > w
6. O[w, i]← O[w, i− 1]
7. else
8. O[w, i]← max(vi + O[w − wi, i− 1], O[w, i− 1])

Runtime Θ(nW ).

16 / 18



Discussion

1. Runtime. This is called a pseudo-polynomial algorithm
• in our word RAM model, we have been assuming all vi’s, wi’s and W fit in a word
• so input size is Θ(n) words
• but the runtime also depends on the values of the inputs

01-knapsack is NP-complete, so we don’t really expect to do much better

2. Exercise

recover the optimum subset

17 / 18



A related problem

Subset sum: given positive integers a1, . . . , an and integer K, find if there is S ⊆ {1, . . . , n}
with ∑

i∈S

ai = K

Option 1: write a “new” algorithm
• very much like knapsack
• pseudo polynomial runtime Θ(nK)

Option 2: use the knapsack algorithm with
• w1, . . . , wn = a1, . . . , an

• v1, . . . , vn = a1, . . . , an

• W = K

18 / 18


