CS 341: Algorithms

Lecture 7: Dynamic programming

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

This module: the dynamic programming paradigm through examples

• weighted interval scheduling, knapsack, longest increasing subsequence, longest common subsequence, etc

Computational model:

- word RAM
- assume all weights, values, capacities, deadlines, etc, fit in a word

What about the name?

- \bullet programming as~in decision making
- dynamic because it sounds cool.

Warmup example: Fibonacci numbers

A slow recursive algorithm

Def: Fibonacci numbers

•
$$F_0 = 0, F_1 = 1$$

• $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

Fib(n) 1. if n = 0 return 0 2. if n = 1 return 1 3. return Fib(n - 1) + Fib(n - 2)

Assuming we count additions at unit cost, runtime is

$$T(0) = T(1) = 0, \quad T(n) = T(n-1) + T(n-2) + 1$$

This gives T(n) = F(n+1) - 1, so $T(n) \in \Theta(\varphi^n)$, $\varphi = (1 + \sqrt{5})/2$.

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Improved recursive algorithm

let $T = [0, 1, \bullet, \bullet, ...]$ be a global array **Fib**(n)1. **if** $T[n] = \bullet$ 2. T[n] = Fib(n-1) + Fib(n-2)3. **return** T[n]

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version

 Fib(n)

 1.
 let $T = [0, 1, \bullet, \bullet, \dots]$

 2.
 for $i = 2, \dots, n$

 3.
 T[i] = T[i-1] + T[i-2]

 4.
 return T[n]

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)	
1.	$(u,v) \leftarrow (0,1)$
2.	for $i = 2,, n$
3.	$(u,v) \leftarrow (v,u+v)$
4.	return v

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)

 1.
$$(u, v) \leftarrow (0, 1)$$

 2. for $i = 2, ..., n$

 3. $(u, v) \leftarrow (v, u + v)$

 4. return v

All these improved versions use $\Theta(n)$ additions

Main feature: solve "subproblems" bottom up, and store solutions if needed.

Dynamic programming

Key features

- solve problems through recursion
- $\bullet\,$ use a small (polynomial) number of $nested\ subproblems$
- may have to store results for all subproblems
- can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer

- dynamic programming usually deals with all input sizes $1, \ldots, n$
- DAC may not solve "subproblems"
- DAC algorithms not always easy to rewrite iteratively

Recipe

- **Identify subproblems** and (typically) store their solutions in an array. Need to know:
 - dimensions of the array
 - what precisely the array stores
 - where the answer will be found
- Establish recurrence
 - how do small subproblems contribute to the solution of a larger one?
- Find the base case(s)
- Specify the order of computation
- Recovery of the solution
 - traceback strategy to determine the final solution

Weighted interval scheduling

Input:

- *n* intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- each interval has a weight $\boldsymbol{w_i}$

Output:

- a choice T of intervals that do not overlap and maximizes $\sum_{i \in T} w_i$
- greedy algorithm in the case $w_i = 1$

Example: A car rental company has the following requests for a given day:

•
$$I_1 = [2, 8], w_1 = 6$$

- $I_2 = [2, 4], w_2 = 2$
- $I_3 = [5, 6], w_3 = 1$
- $I_4 = [7, 9], w_4 = 2$

Answer is $T = [I_1], W = 6$

start time, finish time

Sketch of the algorithm

Basic idea: either we choose I_n or not.

- then the optimum $O(I_1, \ldots, I_n)$ is the max of two values:
- $w_n + O(I_{m_1}, \ldots, I_{m_s})$, if we choose I_n , where I_{m_1}, \ldots, I_{m_s} are the intervals that do not overlap with I_n
- $O(I_1, \ldots, I_{n-1})$, if we don't choose I_n

Sketch of the algorithm

Basic idea: either we choose I_n or not.

- then the optimum $O(I_1, \ldots, I_n)$ is the max of two values:
- $w_n + O(I_{m_1}, \ldots, I_{m_s})$, if we choose I_n , where I_{m_1}, \ldots, I_{m_s} are the intervals that do not overlap with I_n
- $O(I_1, \ldots, I_{n-1})$, if we don't choose I_n

In general, we don't know what I_{m_1}, \ldots, I_{m_s} look like.

Goal:

- find a way to ensure that I_{m_1}, \ldots, I_{m_s} are of the form I_1, \ldots, I_s , for some s < n (and so on for all indices < n)
- then it suffices to optimize over all $I_1, \ldots, I_j, j = 1, \ldots, n$

The indices p_j

Assume I_1, \ldots, I_n sorted by increasing end time: $f_i \leq f_{i+1}$

Claim: for all j, the set of intervals $I_k \leq I_j$ that do not overlap I_j is of the form I_1, \ldots, I_{p_j} for some $0 \leq p_j < j$ $(p_j = 0$ if no such interval)

The indices p_j

Assume I_1, \ldots, I_n sorted by increasing end time: $f_i \leq f_{i+1}$

Claim: for all j, the set of intervals $I_k \leq I_j$ that do not overlap I_j is of the form I_1, \ldots, I_{p_j} for some $0 \leq p_j < j$ $(p_j = 0$ if no such interval)

The algorithm will need the p_j 's.

- for a given j, find where s_j would be in $[f_1, \ldots, f_n]$
- precisely: p_j is the last index i such that $f_i \leq s_j$
- binary search, so $O(n \log(n))$ total.

Note: still OK if repeated f_i 's

Main procedure

Definition: M[j] is the maximal weight we can get with intervals I_1, \ldots, I_j

Recurrence: M[0] = 0 and for $j \ge 1$

$$M[j] = \max(M[j-1], M[p_j] + w_j)$$

Runtime: $\Theta(n \log(n))$ (sorting, p_j 's) and $\Theta(n)$ (finding the M[j]'s)

Exercise

recover the optimum set, not only M[n], for extra $\Theta(n)$

0/1 knapsack

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- a capacity W

Output:

- a choice of items $S \subset \{1, \ldots, n\}$
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- a capacity W

Output:

- a choice of items $S \subset \{1, \ldots, n\}$
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Example:

- $w_1 = 3, w_2 = 4, w_3 = 6, w_4 = 5$
- $v_1 = 2, v_2 = 3, v_3 = 1, v_4 = 5$
- *W* = 8
- optimum $S = \{1, 4\}$ with weight 8 and value 7

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- a capacity W

Output:

- a choice of items $S \subset \{1, \ldots, n\}$
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Example:

- $w_1 = 3, w_2 = 4, w_3 = 6, w_4 = 5$
- $v_1 = 2, v_2 = 3, v_3 = 1, v_4 = 5$
- W = 8
- optimum $S = \{1, 4\}$ with weight 8 and value 7

See also:

• fractional knapsack (items can be divided), solved with a greedy algorithm

Setting up the recurrence

Set O[w, i] := maximum value achievable using a knapsack of capacity w, items $1, \ldots, i$ Want: O[W, n]

Basic idea: either we choose item n or not.

- then the optimum O[W, n] is the max of two values:
- $v_n + O[W w_n, n 1]$, if we choose n (requires $w_n \le W$)
- O[W, n 1], if we don't choose n

Initial conditions

- O[0,i] = 0 for any i
- O[w, 0] = 0 for any w

Algorithm

01KnapSack $(v_1, ..., v_n, w_1, ..., w_n, W)$ initialize an array O[0..W, 0..n]1. with all O[0, j] = 0 and all O[w, 0] = 02.3. for i = 1, ..., n4. for $w = 1, \ldots, W$ 5.if $w_i > w$ $O[w, i] \leftarrow O[w, i-1]$ 6. 7. else $O[w, i] \leftarrow \max(v_i + O[w - w_i, i - 1], O[w, i - 1])$ 8.

Runtime $\Theta(nW)$.

Discussion

1. Runtime. This is called a **pseudo-polynomial** algorithm

- in our word RAM model, we have been assuming all v_i 's, w_i 's and W fit in a word
- so input size is $\Theta(n)$ words
- but the runtime also depends on the **values** of the inputs

01-knapsack is $\ensuremath{\mathsf{NP}\text{-}\mathsf{complete}}$, so we don't really expect to do much better

2. Exercise

recover the optimum subset

A related problem

Subset sum: given positive integers a_1, \ldots, a_n and integer K, find if there is $S \subseteq \{1, \ldots, n\}$ with

$$\sum_{i \in S} a_i = K$$

Option 1: write a "new" algorithm

- very much like knapsack
- pseudo polynomial runtime $\Theta(nK)$

Option 2: use the knapsack algorithm with

- $w_1,\ldots,w_n=a_1,\ldots,a_n$
- $v_1, \ldots, v_n = a_1, \ldots, a_n$
- W = K