CS 341: Algorithms

Lecture 7: Dynamic programming

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

This module: the dynamic programming paradigm through examples

• weighted interval scheduling, knapsack, longest increasing subsequence, longest common subsequence, etc

Computational model:

- word RAM
- assume all weights, values, capacities, deadlines, etc, fit in a word

What about the name?

- **programming** as in **decision making**
- **dynamic** because it sounds cool.

Warmup example: Fibonacci numbers

A slow recursive algorithm

Def: Fibonacci numbers

•
$$
F_0 = 0, F_1 = 1
$$

• $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$

Fib(*n*) 1. **if** $n = 0$ **return** 0 2. **if** $n = 1$ **return** 1 3. **return** Fib $(n-1)$ + Fib $(n-2)$

Assuming we count additions **at unit cost**, runtime is

$$
T(0) = T(1) = 0, \quad T(n) = T(n-1) + T(n-2) + 1
$$

This gives $T(n) = F(n+1) - 1$, so $T(n) \in \Theta(\varphi^n)$, $\varphi = (1 + \sqrt{5})/2$.

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Improved recursive algorithm

let $T = [0, 1, \bullet, \bullet, \dots]$ be a global array $\mathbf{Fib}(n)$ 1. **if** $T[n] = \bullet$ 2. $T[n] = \text{Fib}(n-1) + \text{Fib}(n-2)$ 3. **return** $T[n]$

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version

 $\mathbf{Fib}(n)$ 1. let $T = [0, 1, \bullet, \bullet, \dots]$ 2. **for** $i = 2, ..., n$ 3. $T[i] = T[i-1] + T[i-2]$ 4. **return** $T[n]$

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Observations

- to compute F_n , we need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

$\text{Fib}(n)$
1. $(u, v) \leftarrow (0, 1)$
2. $\text{for } i = 2, ..., n$
3. $(u, v) \leftarrow (v, u + v)$
4. $\text{return } v$

All these improved versions use $\Theta(n)$ additions

Main feature: solve "subproblems" bottom up, and store solutions if needed.

Dynamic programming

Key features

- solve problems through recursion
- use a small (polynomial) number of **nested subproblems**
- may have to store results for all subproblems
- can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer

- dynamic programming usually deals with all input sizes 1*, . . . , n*
- DAC may not solve "subproblems"
- DAC algorithms not always easy to rewrite iteratively

Recipe

- **Identify subproblems** and (typically) store their solutions in an array. Need to know:
	- dimensions of the array
	- what precisely the array stores
	- where the answer will be found
- **Establish recurrence**
	- how do small subproblems contribute to the solution of a larger one?
- **Find the base case(s)**
- **Specify the order of computation**
- **Recovery of the solution**
	- traceback strategy to determine the final solution

Weighted interval scheduling

Input:

- *n* intervals $I_1 = [s_1, f_1], \ldots, I_n = [s_n, f_n]$ start time, finish time
- each interval has a weight *wⁱ*

Output:

- \bullet a choice T of intervals that **do not overlap** and **maximizes** $\sum_{i \in T} w_i$
- greedy algorithm in the case $w_i = 1$

Example: A car rental company has the following requests for a given day:

- $I_1 = [2, 8], w_1 = 6$
- $I_2 = [2, 4], w_2 = 2$
- $I_3 = [5, 6], w_3 = 1$
- $I_4 = [7, 9], w_4 = 2$

Answer is $T = [I_1], W = 6$

Sketch of the algorithm

Basic idea: either we choose *Iⁿ* or not.

- then the optimum $O(I_1, \ldots, I_n)$ is the max of two values:
- $w_n + O(I_{m_1}, \ldots, I_{m_s})$, if we choose I_n , where I_{m_1}, \ldots, I_{m_s} are the intervals that do not overlap with *Iⁿ*
- $O(I_1, \ldots, I_{n-1})$, if we don't choose I_n

Sketch of the algorithm

Basic idea: either we choose *Iⁿ* or not.

- then the optimum $O(I_1, \ldots, I_n)$ is the max of two values:
- $w_n + O(I_{m_1}, \ldots, I_{m_s})$, if we choose I_n , where I_{m_1}, \ldots, I_{m_s} are the intervals that do not overlap with *Iⁿ*
- $O(I_1, \ldots, I_{n-1})$, if we don't choose I_n

In general, we don't know what I_{m_1}, \ldots, I_{m_s} look like.

Goal:

- find a way to ensure that I_{m_1}, \ldots, I_{m_s} are of the form I_1, \ldots, I_s , for some $s < n$ (and so on for all indices *< n*)
- then it suffices to optimize over all $I_1, \ldots, I_j, j = 1, \ldots, n$

The indices *p^j*

Assume I_1, \ldots, I_n sorted by increasing end time: $f_i \leq f_{i+1}$

Claim: for all *j*, the set of intervals $I_k \leq I_j$ that do not overlap I_j is of the form I_1, \ldots, I_p for some $0 \leq p_i < j$ $(p_j = 0$ if no such interval)

The indices *p^j*

Assume I_1, \ldots, I_n sorted by increasing end time: $f_i \leq f_{i+1}$

Claim: for all *j*, the set of intervals $I_k \leq I_j$ that do not overlap I_j is of the form I_1, \ldots, I_p for some $0 \leq p_i < j$ $p_i = 0$ if no such interval)

The algorithm will need the p_j 's.

- for a given *j*, find where s_i would be in $[f_1, \ldots, f_n]$
- precisely: p_j is the last index *i* such that $f_i \leq s_j$
- binary search, so $O(n \log(n))$ total.

Note: still OK if repeated *fⁱ* 's

Main procedure

Definition: $M[j]$ is the maximal weight we can get with intervals I_1, \ldots, I_j

Recurrence: $M[0] = 0$ and for $j \ge 1$

$$
M[j] = \max(M[j-1], M[p_j] + w_j)
$$

Runtime: $\Theta(n \log(n))$ (sorting, *p*_{*j*}'s) and $\Theta(n)$ (finding the *M*[*j*]'s)

Exercise

recover the optimum set, not only $M[n]$, for extra $\Theta(n)$

0/1 knapsack

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- a **capacity** *W*

Output:

- a choice of items *S* ⊂ {1*, . . . , n*}
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Input:

- items $1, \ldots, n$ with **weights** w_1, \ldots, w_n and **values** v_1, \ldots, v_n
- a **capacity** *W*

Output:

- a choice of items *S* ⊂ {1*, . . . , n*}
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Example:

- $w_1 = 3, w_2 = 4, w_3 = 6, w_4 = 5$
- $v_1 = 2, v_2 = 3, v_3 = 1, v_4 = 5$
- \bullet $W = 8$
- optimum $S = \{1, 4\}$ with weight 8 and value 7

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- a **capacity** *W*

Output:

- a choice of items *S* ⊂ {1*, . . . , n*}
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Example:

- $w_1 = 3, w_2 = 4, w_3 = 6, w_4 = 5$
- $v_1 = 2, v_2 = 3, v_3 = 1, v_4 = 5$
- \bullet $W = 8$
- optimum $S = \{1, 4\}$ with weight 8 and value 7

See also:

• fractional knapsack (items can be divided), solved with a greedy algorithm

Setting up the recurrence

Set $O[w, i] :=$ maximum value achievable using a knapsack of capacity w, items $1, \ldots, i$ Want: $O[W, n]$

Basic idea: either we choose item *n* or not.

- then the optimum $O[W, n]$ is the max of two values:
- $v_n + O[W w_n, n-1]$, if we choose *n* (requires $w_n \leq W$)
- $O[W, n-1]$, if we don't choose *n*

Initial conditions

- $O[0, i] = 0$ for any *i*
- \bullet $O[w, 0] = 0$ for any w

Algorithm

01KnapSack $(v_1, \ldots, v_n, w_1, \ldots, w_n, W)$ 1. initialize an array *O*[0*..W,* 0*..n*] 2. with all $O[0, j] = 0$ and all $O[w, 0] = 0$ 3. **for** $i = 1, ..., n$ 4. **for** $w = 1, \ldots, W$ 5. **if** $w_i > w$ 6. $O[w, i] \leftarrow O[w, i - 1]$ 7. **else** 8. $O[w, i] \leftarrow \max(v_i + O[w - w_i, i - 1], O[w, i - 1])$

Runtime Θ(*nW*).

Discussion

1. Runtime. This is called a **pseudo-polynomial** algorithm

- in our word RAM model, we have been assuming all v_i 's, w_i 's and W fit in a word
- so input size is $\Theta(n)$ words
- but the runtime also depends on the **values** of the inputs

01-knapsack is **NP-complete**, so we don't really expect to do much better

2. Exercise

recover the optimum subset

A related problem

Subset sum: given positive integers a_1, \ldots, a_n and integer *K*, find if there is $S \subseteq \{1, \ldots, n\}$ with

$$
\sum_{i \in S} a_i = K
$$

Option 1: write a "new" algorithm

- very much like knapsack
- pseudo polynomial runtime $\Theta(nK)$

Option 2: use the knapsack algorithm with

- $w_1, \ldots, w_n = a_1, \ldots, a_n$
- $v_1, \ldots, v_n = a_1, \ldots, a_n$
- \bullet $W = K$