
CS 341: Algorithms

Lecture 8: Dynamic programming, continued

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 14



Longest increasing subsequence

2 / 14



The problem

Input: An array A[1..n] of integers

Output: A longest increasing subsequence of A (or just its length)
(does not need to be contiguous)

Example: A = [7, 1, 3, 10, 11, 5, 19] gives [7, 1, 3, 10, 11, 5, 19]

Remark: there are 2n subsequences (including an empty one, which doesn’t count)

3 / 14



Tentative subproblems

Attempt 1:
• Subproblems: the length ℓ[i] of a longest increasing subsequence of A[1..i]
• on the example, ℓ[6] = 4
• so what? not enough to deduce ℓ[7]

Attempt 2:
• Subproblems: the length ℓ[i] of a longest increasing subsequence of A[1..i], together

with its last entry
• example: ℓ[6] = 4, with last element 11
• OK if we can add A[i + 1], but what if not?

4 / 14



A more complicated recurrence

Attempt 3:
• let L[i] be the length of a longest increasing subsequence of A[1..i] that ends with A[i],

for i = 1, . . . , n

• so L[1] = 1

Idea:
• a longest increasing subsequence S ending at A[i] looks like

S = [. . . , A[j], A[i]] = S′ cat [A[i]]

• S′ is a longest increasing subsequence ending at A[j] (or it is empty)
• don’t know j, but we can try all j < i for which A[j] < A[i]

5 / 14



Iterative algorithm

LongestIncreasingSubsequence(A[1..n])
1. L[1]← 1
2. for i = 2, . . . , n do
3. L[i]← 1
4. for j = 1, . . . , i− 1 do
5. if A[j] < A[i] then
6. L[i] = max(L[i], L[j] + 1)
7. return the maximum entry in L

Runtime: Θ(n2)

Remark:
• the algorithm does not return the sequence itself, but could be modified to do so

6 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 5], ℓ[6] = 4, done i = 6
• j = 1, best increasing sequence [1] can add 5
• j = 2, best increasing sequence [1, 3] can add 5
• j = 3, best increasing sequence [2, 8, 10] can’t add 5
• j = 4, best increasing sequence [2, 8, 10, 11] can’t add 5

7 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 5], ℓ[6] = 4, doing i = 7
• j = 1, best increasing sequence [1] can add 5
• j = 2, best increasing sequence [1, 3] can add 5
• j = 3, best increasing sequence [2, 8, 10] can’t add 5
• j = 4, best increasing sequence [2, 8, 10, 11] can’t add 5

1 < 3 < 5 < 10 < 11 so ℓ[7] = 4 and we update the j = 3 sequence to [1, 3, 5]

7 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 15], ℓ[6] = 4, done i = 6
• j = 1, best increasing sequence [1] can add 15
• j = 2, best increasing sequence [1, 3] can add 15
• j = 3, best increasing sequence [2, 8, 10] can add 15
• j = 4, best increasing sequence [2, 8, 10, 11] can add 15

7 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 15], ℓ[6] = 4, doing i = 7
• j = 1, best increasing sequence [1] can add 15
• j = 2, best increasing sequence [1, 3] can add 15
• j = 3, best increasing sequence [2, 8, 10] can add 15
• j = 4, best increasing sequence [2, 8, 10, 11] can add 15

1 < 3 < 10 < 11 < 15 so ℓ[7] = 5 and we have the j = 5 sequence [2, 8, 10, 11, 15]

7 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 0], ℓ[6] = 4, done i = 6
• j = 1, best increasing sequence [1] can’t add 0
• j = 2, best increasing sequence [1, 3] can’t add 0
• j = 3, best increasing sequence [2, 8, 10] can’t add 0
• j = 4, best increasing sequence [2, 8, 10, 11] can’t add 0

7 / 14



Bonus: a faster algorithm
As before, ℓ[i]=of a longest increasing subsequence of A[1..i]

Idea: we consider the “best” increasing sequences in A[1..i]
• can have several increasing sequence of length j for each j = 1, . . . , ℓ[i]
• for any j, best increasing sequence of length j: one whose last entry is the smallest

Example: A = [2, 8, 10, 11, 1, 3, 0], ℓ[6] = 4, doing i = 7
• j = 1, best increasing sequence [1] can’t add 0
• j = 2, best increasing sequence [1, 3] can’t add 0
• j = 3, best increasing sequence [2, 8, 10] can’t add 0
• j = 4, best increasing sequence [2, 8, 10, 11] can’t add 0

0 < 1 < 3 < 10 < 11 so ℓ[7] = 4 and we update the j = 1 sequence to [0]

7 / 14



Iterative algorithm

Remarks
• sufficient to store the last entry in each best increasing sequence
• these last entries are increasing (1 < 3 < 10 < 11)
• so we can use binary search to find where the new A[i] fits

LongestIncreasingSubsequence(A[1..n])
1. b← [−∞,∞, . . . ,∞], ℓ← 0 indexed starting from 0
2. for i = 1, . . . , n do
3. find k ∈ {0, . . . , ℓ} such that b[k] < A[i] ≤ b[k + 1]
4. b[k + 1]← A[i]
5. if k = ℓ then ℓ++
6. return ℓ

Runtime: O(n log(n))

8 / 14



Longest common subsequence

9 / 14



The problem

Input: Arrays A[1..n] and B[1..m] of characters or integers

Output: The maximum length k of a common subsequence to A and B
(subsequences do not need to be contiguous)

Example: A =blurry, B =burger, longest common subsequence is burr

Remark: there are 2n subsequences in A, 2m subsequences in B

Exercise

an algorithm for longest common subsequence can be used for longest increasing
subsequence

10 / 14



A bivariate recurrence

Definition: let M [i, j] be the length of a longest subsequence between A[1..i] and B[1..j]
• M [0, j] = 0 for all j

• M [i, 0] = 0 for all i

• M [i, j] is the max of up to three values
• M [i, j − 1] (don’t use B[j])
• M [i− 1, j] (don’t use A[i])
• if A[i] = B[j], 1 + M [i − 1, j − 1]

The algorithm computes all M [i, j], using two nested loops, so runtime Θ(mn)

Bonus: if A[i] = B[j], no need to consider M [i, j − 1] and M [i− 1, j]

11 / 14



Edit distance

12 / 14



The problem

Input: arrays A[1..n] and B[1..m] of characters

Output: minimum number of {add, delete, change} operations that turn A into B

Example: A =snowy, B =sunny

s n o w y
s u n n y

s n o w y
s u n n y

s n o w y
s u n n y

3C 1A, 2C, 1D 2A, 2C, 2D

Examples: DNA sequences made of a, c, g, t

13 / 14



The recurrence

Definition: let D[i, j] be the edit distance between A[1..i] and B[1..j]
• D[0, j] = j for all j (add j characters to empty A)
• D[i, 0] = i for all i (delete i characters from A)
• D[i, j] is the min of three values
• D[i− 1, j − 1] (if A[i] = B[j]) or D[i− 1, j − 1] + 1 (otherwise)
• D[i− 1, j] + 1 (delete A[i] and match A[1..i− 1] with B[1..j])
• D[i, j − 1] + 1 (add B[j] and match A[1..i] with B[1..j − 1])

The algorithm computes all D[i, j], using two nested loops, so runtime Θ(mn)

14 / 14


