CS 341: Algorithms

Lecture 9: Dynamic programming, continued

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Maximum independent set in a tree

Input:

• a tree *T* (connected undirected graph with no cycle) with *n* vertices

Output:

- a maximum cardinality **independent set** of vertices in *T*
- a subset *S* of vertices is **independent** if there is **no edge** in *T* connecting two elements of *S*

Remarks:

- \bullet in a general graph, INDEPENDENTSET is NP-complete
- *a priori* not a rooted tree, but we can suppose we chose a root *r*
- vertices $= \{1, \ldots, n\}$, each vertex stores a linked list of children

Case discussion: is the root in *S* or not?

If no:

- all its children can be in *S*
- so we look (recursively) at the children of the root
- taking independent sets in children gives an independent set in *T*

Case discussion: is the root in *S* or not?

If yes:

- none of its children can be in *S*
- so we can look (recursively) at its **grandchildren**
- taking independent sets in grandchildren gives an independent set in *T*

Finally

$$
O(T) = \max(1 + \sum_{C \text{ grandchild of } r} O(C), \sum_{C' \text{ child of } r} O(C'))
$$

Algorithm:

- level-order traversal, get an array $V[0..h]$, $V[i]$ =linked list of vertices at level *i*
- **for** *v* in $V[h]$, set $O[v] = 1$
- **for** $i = h 1, \ldots, 0$, for *v* in *V*[*i*], use the recurrence to get $O[v]$ (loop over children and grandchildren to get the sums)

Finally

$$
O(T) = \max(1 + \sum_{C \text{ grandchild of } r} O(C), \sum_{C' \text{ child of } r} O(C'))
$$

Runtime: proportional to

$$
\sum_{v \text{ vertex in } T} 1 + \sum_{v \text{ vertex in } T} # \text{children}(v) + \sum_{v \text{ vertex in } T} # \text{grandchildren}(v)
$$

- second sum is number of vertices of level at least 1
- third sum is number of vertices of level at least 2
- so $\Theta(n)$ altogether

Exercise

find the independent set itself

Optimal binary search trees

Input:

- integers (or something else that can be ordered) $1, \ldots, n$
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an **optimal** BST with keys 1*, . . . , n*
- **optimal:** minimizes $\sum_{i=1}^{n} p_i \text{depth}(i) = \text{expected number of tests for a search}$ (here, depths start at 1)

Input:

- integers (or something else that can be ordered) 1*, . . . , n*
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an **optimal** BST with keys 1*, . . . , n*
- **optimal:** minimizes $\sum_{i=1}^{n} p_i \text{depth}(i) = \text{expected number of tests for a search}$ (here, depths start at 1)

6 / 14

Example: $p_1 = p_2 = p_3 = p_4 = p_5 = 1/5$ $1 \cdot \frac{1}{5} + 2 \cdot 2 \cdot \frac{1}{5} + 2 \cdot 3 \cdot \frac{1}{5} = \frac{11}{5}$ $\frac{1}{5}$ $(1 + 2 + 3 + 4 + 5) = 3$

Input:

- integers (or something else that can be ordered) 1*, . . . , n*
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an **optimal** BST with keys 1*, . . . , n*
- **optimal:** minimizes $\sum_{i=1}^{n} p_i \text{depth}(i) = \text{expected number of tests for a search}$ (here, depths start at 1)

See also

- optimal static ordering for **linked lists**
- **Huffman trees**

both built using greedy algorithms

Input:

- integers (or something else that can be ordered) 1*, . . . , n*
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an **optimal** BST with keys 1*, . . . , n*
- **optimal:** minimizes $\sum_{i=1}^{n} p_i \text{depth}(i) = \text{expected number of tests for a search}$ (here, depths start at 1)

Remark

- there are $\frac{1}{n+1} \binom{2n}{n}$ binary search trees with *n* keys
- this is $\Theta(4^n/n^{1.5})$

Definition for *i, j* in $\{1, \ldots, n\}$, we define *M*[*i, j*] by

- $M[i, j] =$ the minimal cost for items $\{i, \ldots, j\}$, if $i \leq j$
- $M[i, j] = 0$ for $j < i$

Want: *M*[1*, n*]

Recurrence

$$
M[i,j] = \min_{i \le k \le j} \left(\mathbf{M}[i,k-1] + \sum_{\ell=i}^{k-1} p_{\ell} + p_k + \mathbf{M}[k+1,j] + \sum_{\ell=k+1}^{j} p_{\ell} \right)
$$

=
$$
\min_{i \le k \le j} \left(M[i,k-1] + M[k+1,j] \right) + \sum_{\ell=i}^{j} p_{\ell}
$$

check: gives $M[i, i] = p_i$

Algorithm

Remark: to get $\sum_{\ell=i}^j p_\ell$:

- compute $S[\ell] = p_1 + \cdots + p_\ell$, for $\ell = 1, \ldots, n$
- then $p_i + \cdots + p_j = S[j] S[i-1]$, with $S[0] = 0$

OptimalBST	$(p_1, \ldots, p_n, S_0, \ldots, S_n)$
1. for $i = 1, \ldots, n+1$	
2. $M[i, i-1] \leftarrow 0$	
3. for $d = 0, \ldots, n-1$ $d = j - i$	
4. for $i = 1, \ldots, n - d$	
5. $j \leftarrow d + i$	
6. $M[i, j] \leftarrow \min_{i \leq k \leq j} (M[i, k-1] + M[k+1, j]) + S[j] - S[i-1]$	

Runtime Θ(*n* 3)

A faster algorithm

For all i, j , let $k_{i,j}$ be the largest index that gives the min at Step 6.

Claim (difficult)

For all *i*, *j*, with $j > i$, we have $k_{i,j-1} \leq k_{i,j} \leq k_{i+1,j}$ (root shifts left (right) if you add elements on the left (right))

OptimalBST	$(p_1, \ldots, p_n, S_0, \ldots, S_n)$
1. for $i = 1, \ldots, n+1$	
2. $M[i, i-1] \leftarrow 0$	
3. for $d = 0, \ldots, n-1$ $d = j-i$	
4. for $i = 1, \ldots, n-d$	
5. $j \leftarrow d+i$	
6. if $d = 0$ then range $\leftarrow \{i\}$ else range $\leftarrow \{k_{i,j-1}, \ldots, k_{i+1,j}\}$	
7. $M[i, j], k_{i,j} \leftarrow \min_{k \in \text{range}} (M[i, k-1] + M[k+1, j]) + S[j] - S[i-1]$	

Runtime, revisited

Work is proportional to

$$
\sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (k_{i+1,j} - k_{i,j-1} + 1) = \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (\mathbf{k}_{i+1,i+d} - \mathbf{k}_{i,i-1+d} + 1)
$$

$$
\leq \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (k_{i+1,i+d} - k_{i,i-1+d}) + \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} 1
$$

$$
\leq \sum_{d=0}^{n-1} (k_{n-d+1,n} - k_{0,d-1}) + \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} 1
$$

$$
\leq 2n^2
$$

Conclusion: $\Theta(n^2)$

Text segmentation

Input: a string, represented as an array *A*[1*..n*]

Output:

- **true** if we can **segment** of *A* into words from a given dictionary
- **false** otherwise

(we assume that we can test if $A[i..j]$ is a word in $O(1)$ using **is_word**[*i..j*])

Example: $A=$ caramelow \rightarrow **true**, with **car a me low**

Remark: there are 2^{n-1} ways to segment *A*

Subproblems and their recurrence

Subproblems: can we split *A*[1*..i*] into words?

Definition: for $i = 1, \ldots, n$, let $s[i]$ be

- **true** if we can **segment** of *A*[1*..i*] into words
- **false** otherwise

we set $s[0]$ = **true**

Recurrence:
$$
s[i] = \text{or}_{j=0}^{i-1} (s[j] \text{ and } \text{is_word}(A[j+1..i]))
$$

Algorithm could be written recursively, but we'll focus on iterative version

A polynomial algorithm

IsSplittable(*A*[1*..n*]) 1. $s[0] \leftarrow \textbf{true}$ 2. **for** *i* = 1*, . . . , n* **do** 3. $s[i] \leftarrow \textbf{false}$ 4. **for** $j = 0, ..., i - 1$ **do** 5. $s[i] \leftarrow s[i] \text{ or } (s[j] \text{ and is } \text{word}(A[j+1..i]))$ $6.$ **return** $s[n]$

Runtime: Θ(*n* 2)

Exercise

return a valid subdivision, if there is one