CS 341: Algorithms

Lecture 9: Dynamic programming, continued

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Maximum independent set in a tree

Input:

• a tree T (connected undirected graph with no cycle) with n vertices

Output:

- $\bullet\,$ a maximum cardinality independent set of vertices in T
- a subset S of vertices is independent if there is no edge in T connecting two elements of S

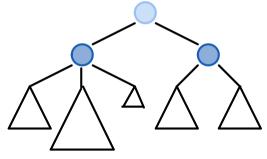
Remarks:

- in a general graph, INDEPENDENTSET is NP-complete
- a priori not a rooted tree, but we can suppose we chose a root \boldsymbol{r}
- vertices = $\{1, \ldots, n\}$, each vertex stores a linked list of children

Case discussion: is the root in S or not?

If no:

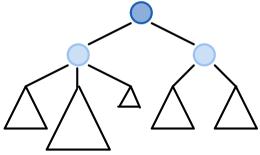
- $\bullet\,$ all its children can be in S
- so we look (recursively) at the children of the root
- $\bullet\,$ taking independent sets in children gives an independent set in T



Case discussion: is the root in S or not?

If yes:

- none of its children can be in S
- $\bullet\,$ so we can look (recursively) at its grandchildren
- $\bullet\,$ taking independent sets in grandchildren gives an independent set in T



Finally

$$O(T) = \max(1 + \sum_{C \text{ grandchild of } r} O(C), \sum_{C' \text{ child of } r} O(C'))$$

Algorithm:

- level-order traversal, get an array V[0..h], V[i] =linked list of vertices at level i
- for v in V[h], set O[v] = 1
- for i = h 1,...,0, for v in V[i], use the recurrence to get O[v] (loop over children and grandchildren to get the sums)

Finally

$$O(T) = \max(1 + \sum_{C \text{ grandchild of } r} O(C), \sum_{C' \text{ child of } r} O(C'))$$

Runtime: proportional to

$$\sum_{v \text{ vertex in } T} 1 + \sum_{v \text{ vertex in } T} \# \text{children}(v) + \sum_{v \text{ vertex in } T} \# \text{grandchildren}(v)$$

- second sum is number of vertices of level at least 1
- third sum is number of vertices of level at least 2
- so $\Theta(n)$ altogether

$\mathbf{Exercise}$

find the independent set itself

Optimal binary search trees

Input:

- integers (or something else that can be ordered) $1,\ldots,n$
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an optimal BST with keys $1, \ldots, n$
- optimal: minimizes ∑_{i=1}ⁿ p_idepth(i) = expected number of tests for a search (here, depths start at 1)

Input:

- integers (or something else that can be ordered) $1,\ldots,n$
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an optimal BST with keys $1, \ldots, n$
- optimal: minimizes ∑_{i=1}ⁿ p_idepth(i) = expected number of tests for a search (here, depths start at 1)

Example: $p_1 = p_2 = p_3 = p_4 = p_5 = 1/5$

Input:

- integers (or something else that can be ordered) $1,\ldots,n$
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an optimal BST with keys $1, \ldots, n$
- optimal: minimizes ∑_{i=1}ⁿ p_idepth(i) = expected number of tests for a search (here, depths start at 1)

See also

- $\bullet\,$ optimal static ordering for linked lists
- Huffman trees

both built using greedy algorithms

Input:

- integers (or something else that can be ordered) $1,\ldots,n$
- probabilities of access p_1, \ldots, p_n , with $p_1 + \cdots + p_n = 1$

Output:

- an optimal BST with keys $1, \ldots, n$
- optimal: minimizes ∑_{i=1}ⁿ p_idepth(i) = expected number of tests for a search (here, depths start at 1)

Remark

- there are $\frac{1}{n+1}\binom{2n}{n}$ binary search trees with n keys
- this is $\Theta(4^n/n^{1.5})$

Definition for i, j in $\{1, \ldots, n\}$, we define $\boldsymbol{M}[\boldsymbol{i}, \boldsymbol{j}]$ by

- M[i, j] = the minimal cost for items $\{i, \ldots, j\}$, if $i \leq j$
- M[i, j] = 0 for j < i

Want: M[1,n]

Recurrence

$$M[i,j] = \min_{i \le k \le j} \left(M[i, k-1] + \sum_{\ell=i}^{k-1} p_{\ell} + p_{k} + M[k+1, j] + \sum_{\ell=k+1}^{j} p_{\ell} \right)$$
$$= \min_{i \le k \le j} \left(M[i, k-1] + M[k+1, j] \right) + \sum_{\ell=i}^{j} p_{\ell}$$

check: gives $M[i,i] = p_i$

Algorithm

Remark: to get $\sum_{\ell=i}^{j} p_{\ell}$:

- compute $S[\ell] = p_1 + \dots + p_\ell$, for $\ell = 1, \dots, n$
- then $p_i + \dots + p_j = S[j] S[i-1]$, with S[0] = 0

Runtime $\Theta(n^3)$

A faster algorithm

For all i, j, let $k_{i,j}$ be the largest index that gives the min at Step 6.

Claim (difficult)

For all i, j, with j > i, we have $k_{i,j-1} \leq k_{i,j} \leq k_{i+1,j}$ (root shifts left (right) if you add elements on the left (right))

Runtime, revisited

Work is proportional to

$$\sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (k_{i+1,j} - k_{i,j-1} + 1) = \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (k_{i+1,i+d} - k_{i,i-1+d} + 1)$$

$$\leq \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (k_{i+1,i+d} - k_{i,i-1+d}) + \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} 1$$

$$\leq \sum_{d=0}^{n-1} (k_{n-d+1,n} - k_{0,d-1}) + \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} 1$$

$$\leq 2n^2$$

Conclusion: $\Theta(n^2)$

Text segmentation

Input: a string, represented as an array A[1..n]

Output:

- true if we can **segment** of A into words from a given dictionary
- **false** otherwise

(we assume that we can test if A[i..j] is a word in O(1) using $is_word[i..j]$)

Example: A=caramelow \rightarrow **true**, with **car a me low**

Remark: there are 2^{n-1} ways to segment A

Subproblems and their recurrence

Subproblems: can we split A[1..i] into words?

Definition: for $i = 1, \ldots, n$, let s[i] be

- true if we can segment of A[1..i] into words
- **false** otherwise

we set $s[0] = \mathbf{true}$

Recurrence:
$$s[i] = \mathbf{or}_{j=0}^{i-1} \left(s[j] \text{ and } \mathbf{is}_\mathbf{word}(A[j+1..i]) \right)$$

Algorithm could be written recursively, but we'll focus on iterative version

A polynomial algorithm

 $\begin{array}{ll} \textbf{IsSplittable}(A[1..n]) \\ 1. & s[0] \leftarrow \textbf{true} \\ 2. & \textbf{for } i = 1, \dots, n \textbf{ do} \\ 3. & s[i] \leftarrow \textbf{false} \\ 4. & \textbf{for } j = 0, \dots, i-1 \textbf{ do} \\ 5. & s[i] \leftarrow s[i] \textbf{ or } (s[j] \textbf{ and } \textbf{is_word}(A[j+1..i])) \\ 6. & \textbf{return } s[n] \end{array}$

Runtime: $\Theta(n^2)$

Exercise

return a valid subdivision, if there is one