
CS 341: Algorithms

Lecture 9: Dynamic programming, continued

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 14



Maximum independent set in a tree

2 / 14



The problem
Input:
• a tree T (connected undirected graph with no cycle) with n vertices

Output:
• a maximum cardinality independent set of vertices in T

• a subset S of vertices is independent if there is no edge in T connecting two elements
of S

Remarks:
• in a general graph, IndependentSet is NP-complete
• a priori not a rooted tree, but we can suppose we chose a root r

• vertices = {1, . . . , n}, each vertex stores a linked list of children

3 / 14



Setting up the recurrence
Case discussion: is the root in S or not?

If no:
• all its children can be in S

• so we look (recursively) at the children of the root
• taking independent sets in children gives an independent set in T

4 / 14



Setting up the recurrence
Case discussion: is the root in S or not?

If yes:
• none of its children can be in S

• so we can look (recursively) at its grandchildren
• taking independent sets in grandchildren gives an independent set in T

4 / 14



Setting up the recurrence
Finally

O(T ) = max(1 +
∑

C grandchild of r

O(C),
∑

C′ child of r

O(C ′))

Algorithm:
• level-order traversal, get an array V [0..h], V [i] =linked list of vertices at level i

• for v in V [h], set O[v] = 1
• for i = h− 1, . . . , 0, for v in V [i], use the recurrence to get O[v]

(loop over children and grandchildren to get the sums)

4 / 14



Setting up the recurrence
Finally

O(T ) = max(1 +
∑

C grandchild of r

O(C),
∑

C′ child of r

O(C ′))

Runtime: proportional to∑
v vertex in T

1 +
∑

v vertex in T

#children(v) +
∑

v vertex in T

#grandchildren(v)

• second sum is number of vertices of level at least 1
• third sum is number of vertices of level at least 2
• so Θ(n) altogether

Exercise

find the independent set itself

4 / 14



Optimal binary search trees

5 / 14



The problem
Input:
• integers (or something else that can be ordered) 1, . . . , n

• probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:
• an optimal BST with keys 1, . . . , n

• optimal: minimizes
∑n

i=1 pidepth(i) = expected number of tests for a search
(here, depths start at 1)

6 / 14



The problem
Input:
• integers (or something else that can be ordered) 1, . . . , n

• probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:
• an optimal BST with keys 1, . . . , n

• optimal: minimizes
∑n

i=1 pidepth(i) = expected number of tests for a search
(here, depths start at 1)

Example: p1 = p2 = p3 = p4 = p5 = 1/5

6 / 14



The problem
Input:
• integers (or something else that can be ordered) 1, . . . , n

• probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:
• an optimal BST with keys 1, . . . , n

• optimal: minimizes
∑n

i=1 pidepth(i) = expected number of tests for a search
(here, depths start at 1)

See also
• optimal static ordering for linked lists
• Huffman trees

both built using greedy algorithms

6 / 14



The problem
Input:
• integers (or something else that can be ordered) 1, . . . , n

• probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:
• an optimal BST with keys 1, . . . , n

• optimal: minimizes
∑n

i=1 pidepth(i) = expected number of tests for a search
(here, depths start at 1)

Remark
• there are 1

n+1
(2n

n

)
binary search trees with n keys

• this is Θ(4n/n1.5)

6 / 14



Setting up the recurrence

Definition for i, j in {1, . . . , n}, we define M [i, j] by
• M [i, j] = the minimal cost for items {i, . . . , j}, if i ≤ j

• M [i, j] = 0 for j < i

Want: M [1, n]

Recurrence

M [i, j] = min
i≤k≤j

(
M [i, k − 1] +

k−1∑
ℓ=i

pℓ + pk + M [k + 1, j] +
j∑

ℓ=k+1
pℓ

)

= min
i≤k≤j

(
M [i, k − 1] + M [k + 1, j]

)
+

j∑
ℓ=i

pℓ

check: gives M [i, i] = pi

7 / 14



Algorithm

Remark: to get
∑j

ℓ=i pℓ:
• compute S[ℓ] = p1 + · · ·+ pℓ, for ℓ = 1, . . . , n

• then pi + · · ·+ pj = S[j]− S[i− 1], with S[0] = 0

OptimalBST(p1, . . . , pn, S0, . . . , Sn)
1. for i = 1, . . . , n + 1
2. M [i, i− 1]← 0
3. for d = 0, . . . , n− 1 d = j − i
4. for i = 1, . . . , n− d
5. j ← d + i
6. M [i, j]← mini≤k≤j(M [i, k − 1] + M [k + 1, j]) + S[j]− S[i− 1]

Runtime Θ(n3)

8 / 14



A faster algorithm
For all i, j, let ki,j be the largest index that gives the min at Step 6.

Claim (difficult)

For all i, j, with j > i, we have ki,j−1 ≤ ki,j ≤ ki+1,j

(root shifts left (right) if you add elements on the left (right))

OptimalBST(p1, . . . , pn, S0, . . . , Sn)
1. for i = 1, . . . , n + 1
2. M [i, i− 1]← 0
3. for d = 0, . . . , n− 1 d = j − i
4. for i = 1, . . . , n− d
5. j ← d + i
6. if d = 0 then range← {i} else range← {ki,j−1, . . . , ki+1,j}
7. M [i, j], ki,j ← mink∈range(M [i, k − 1] + M [k + 1, j]) + S[j]− S[i− 1]

9 / 14



Runtime, revisited

Work is proportional to

n−1∑
d=0

n−d∑
i=1

(ki+1,j − ki,j−1 + 1) =
n−1∑
d=0

n−d∑
i=1

(ki+1,i+d − ki,i−1+d + 1)

≤
n−1∑
d=0

n−d∑
i=1

(ki+1,i+d − ki,i−1+d) +
n−1∑
d=0

n−d∑
i=1

1

≤
n−1∑
d=0

(kn−d+1,n − k0,d−1) +
n−1∑
d=0

n−d∑
i=1

1

≤ 2n2

Conclusion: Θ(n2)

10 / 14



Text segmentation

11 / 14



The problem

Input: a string, represented as an array A[1..n]

Output:
• true if we can segment of A into words from a given dictionary
• false otherwise

(we assume that we can test if A[i..j] is a word in O(1) using is word[i..j])

Example: A=caramelow → true, with car a me low

Remark: there are 2n−1 ways to segment A

12 / 14



Subproblems and their recurrence

Subproblems: can we split A[1..i] into words?

Definition: for i = 1, . . . , n, let s[i] be
• true if we can segment of A[1..i] into words
• false otherwise

we set s[0] = true

Recurrence: s[i] = ori−1
j=0

(
s[j] and is word(A[j + 1..i])

)
Algorithm could be written recursively, but we’ll focus on iterative version

13 / 14



A polynomial algorithm

IsSplittable(A[1..n])
1. s[0]← true
2. for i = 1, . . . , n do
3. s[i]← false
4. for j = 0, . . . , i− 1 do
5. s[i]← s[i] or

(
s[j] and is word(A[j + 1..i])

)
6. return s[n]

Runtime: Θ(n2)

Exercise

return a valid subdivision, if there is one

14 / 14


