
CS 341: Algorithms

Lecture 10: Graphs, breadth first search

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 18

Definitions

2 / 18

Undirected graphs

Definition, notation: a graph G is pair (V, E):
• V is a finite set, whose elements are called vertices

(we often take V = {1, . . . , n})
• E is a finite set, whose elements are sets of two (distinct) vertices, and are called edges.

Convention: n is the number of vertices, m is the number of edges.

Data structures:
• adjacency lists: an array A[1..n] s.t. A[v] is the linked list of all edges connected to v.

2m list cells, total size Θ(n + m), but testing if an edge exists is not O(1)

• adjacency matrix: a (0, 1) matrix M of size n× n, with M [v, w] = 1 iff {v, w} is an
edge.
size Θ(n2), but testing if an edge exists is O(1)

3 / 18

Undirected graphs

Definition, notation: a graph G is pair (V, E):
• V is a finite set, whose elements are called vertices

(we often take V = {1, . . . , n})
• E is a finite set, whose elements are sets of two (distinct) vertices, and are called edges.

Convention: n is the number of vertices, m is the number of edges.

Data structures:
• adjacency lists: an array A[1..n] s.t. A[v] is the linked list of all edges connected to v.

2m list cells, total size Θ(n + m), but testing if an edge exists is not O(1)

• adjacency matrix: a (0, 1) matrix M of size n× n, with M [v, w] = 1 iff {v, w} is an
edge.
size Θ(n2), but testing if an edge exists is O(1)

3 / 18

Connected graphs, path, cycles, trees
Definition:
• walk: a sequence v0, . . . , vk of vertices, with {vi, vi+1} in E for i = 0, . . . , k − 1.

length = number of steps = k (k = 0 is OK)

• path: a walk with distinct vertices

• connected graph: G = (V, E) such that for all v, w in V , there is a path/walk v ; w

• cycle: a walk v0, . . . , vk, v0 with k ≥ 2 and vi’s distinct
(k = 1 would be v0, v1, v0, this is not a cycle)

• tree: a connected graph with no cycle
(equiv: a connected graph with m = n− 1)
(equiv: a graph with m = n− 1 and no cycle)

• rooted tree: a tree with a special vertex called root

4 / 18

Breadth-first search

5 / 18

Breadth-first exploration of a graph

BFS(G, s)
G: a graph with n vertices, given by adjacency lists
s: a vertex from G
1. let Q be an empty queue
2. let visited be an array of size n, with all entries set to false
3. enqueue(s, Q)
4. visited[s]← true
5. while Q not empty do
6. v ← dequeue(Q)
7. for all w neighbours of v do
8. if visited[w] is false
9. enqueue(w, Q)
10. visited[w]← true

6 / 18

Runtime

Anaysis:
• each vertex is enqueued at most once
• so each vertex is dequeued at most once O(n) for steps 5-6
• so each adjacency list is read at most once

For all v, write dv = number of neighbours of v = length of A[v] = degree of v.

Then total cost at step 7 is

O

(∑
v

dv

)
= O(m)

cf. the adjacency array A has 2m cells

Total: O(n + m)

7 / 18

Correctness 1

Claim

For all vertices v, if visited[v] is true at the end, there is a walk s ; v in G

Proof. Let s = v0, . . . , vK be the vertices for which visited is set to true, in this order. We
prove: for all i, there is a walk s ; vi by induction.
• OK for i = 0
• suppose true for v0, . . . , vi−1.

when visited[vi] is set to true, we are examining the neighbours of a certain vj , j < i.

by assumption, there is a walk s ; vj

because {vj , vi} is in E, there is a walk s ; vi

8 / 18

Correctness 2

Claim

For all vertices v, if there is a walk s ; v in G, visited[v] is true at the end

Proof. Let v0 = s, . . . , vk = v be a walk s ; v. We prove visited[vi] is true for all i by
induction.
• visited[v0] is true
• if visited[vi] is true, we will examine all neighbours v of vi

so at the end of Step 7, all visited[v] will be true, for v neighbour of vi

in particular, visited[vi+1] will be true

9 / 18

Correctness
Summary

For all vertices v, there is a walk s ; v in G if and only if visited[v] is true at the end

Applications
• testing if there is a walk s ; v

• testing if G is connected
• a spanning tree, if G is connected (tree that covers all vertices)

in O(n + m).

Exercise

For a connected graph, n− 1 ≤ m, so O(n + m) = O(m).

10 / 18

Correctness
Summary

For all vertices v, there is a walk s ; v in G if and only if visited[v] is true at the end

Applications
• testing if there is a walk s ; v

• testing if G is connected
• a spanning tree, if G is connected (tree that covers all vertices)

in O(n + m).

Exercise

For a connected graph, n− 1 ≤ m, so O(n + m) = O(m).

10 / 18

Keeping track of parents and levels

BFS(G, s)
1. let Q be an empty queue
2. let parent be an array of size n, with all entries set to NIL
3. let level be an array of size n, with all entries set to ∞
4. enqueue(s, Q)
5. parent[s]← s
6. level[s]← 0
7. while Q not empty do
8. v ← dequeue(Q)
9. for all w neighbours of v do
10. if parent[w] is NIL
11. enqueue(w, Q)
12. parent[w]← v
13. level[w]← level[v] + 1

11 / 18

BFS tree

Definition: the BFS tree T is the subgraph made of:
• all w such that parent[w] ̸= NIL.
• all edges {w, parent[w]}, for w as above (except w = s)

Claim

The BFS tree T is a tree

Proof: T connected, ns vertices, ns − 1 edges
(ns is the number of vertices reachable from s)

Remark: we make it a rooted tree by choosing s as root

12 / 18

Shortest paths from the BFS tree

Claim

If there is a walk s ; v in G then level[v] = dist(s, v)

Observation 1:
• dist(s, v) = length of the shortest path s ; v

• so dist(s, v) ≤ level[v]
• want: level[v] ≤ dist(s, v)

Observation 2: the levels in the queue are always of the form

[ℓ, . . . , ℓ] or [ℓ, . . . , ℓ, ℓ + 1, . . . , ℓ + 1]

so if we dequeue v before w, level[v] ≤ level[w]

13 / 18

Shortest paths from the BFS tree
Claim

If there is a walk s ; v in G then level[v] = dist(s, v)

Proof
• take a shortest path s = v0 → v1 → v2 → · · · → vk = v k = dist(s, v)
• prove level[vi] ≤ i for all i by induction i = k gives level[v] ≤ dist(s, v)
• OK for i = 0

Induction step: suppose OK for i− 1
• the parent of vi is either vi−1, or a vertex we processed before vi−1
• so in any case, level[parent(vi)] ≤ level(vi−1) previous slide
• lhs is level(vi)− 1, rhs is at most i− 1 (induction assumption)
• done

14 / 18

Bipartite graphs

Definition
• a graph G = (V, E) is bipartite if there is a partition V = V1 ∪ V2 such that all edges

have one end in V1 and one end in V2.

15 / 18

Using BFS to test bipartite-ness
Claim.

Suppose G connected, run BFS from any s, and set
• V1 = vertices with odd level
• V2 = vertices with even level.

Then G is bipartite if and only all edges have one end in V1 and one end in V2
(testable in O(n + m))

16 / 18

Using BFS to test bipartite-ness
Claim.

Suppose G connected, run BFS from any s, and set
• V1 = vertices with odd level
• V2 = vertices with even level.

Then G is bipartite if and only all edges have one end in V1 and one end in V2
(testable in O(m))

16 / 18

Using BFS to test bipartite-ness
Claim.

Suppose G connected, run BFS from any s, and set
• V1 = vertices with odd level
• V2 = vertices with even level.

Then G is bipartite if and only all edges have one end in V1 and one end in V2
(testable in O(m))

Proof. ⇐= obvious.

For =⇒ , let W1, W2 be a bipartition. Because paths alternate between W1, W2:
• V1 (= vertices with odd level) is included in W1 (say)
• V2 (= vertices with even level) is included in W2

So V1 = W1 and V2 = W2.

16 / 18

Subgraphs, connected components

Definition:
• subgraph of G = (V, E): a graph G′ = (V ′, E′), where
• V ′ ⊂ V
• E′ ⊂ E, with all edges E′ joining vertices from V ′

• connected component of G = (V, E)
• a connected subgraph of G
• that is not contained in a larger connected subgraph of G

Let Gi = (Vi, Ei), i = 1, . . . , s be the connected components of G = (V, E).
• the Vi’s are a partition of V , with

∑
i ni = n ni = |Vi|

• the Ei’s are a partition of E, with
∑

i mi = m mi = |Ei|

17 / 18

Computing the connected components

Idea: add an outer loop that runs BFS on successive vertices

Exercise

Fill in the details.

Complexity:
• each pass of BFS O(ni + mi), if Gi(Vi, Ei) is the ith connected component
• total O(n + m)

18 / 18

