CS 341: Algorithms

Lecture 10: Graphs, breadth first search

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Definitions

Undirected graphs

Definition, notation: a graph G is pair (V, E) :

- *V* is a finite set, whose elements are called **vertices** (we often take $V = \{1, ..., n\}$)
- *E* is a finite set, whose elements are **sets of two (distinct) vertices**, and are called **edges**.

Convention: \boldsymbol{n} is the number of vertices, \boldsymbol{m} is the number of edges.

Undirected graphs

Definition, notation: a graph *G* is pair **(***V, E***)**:

- *V* is a finite set, whose elements are called **vertices** (we often take $V = \{1, \ldots, n\}$)
- *E* is a finite set, whose elements are **sets of two (distinct) vertices**, and are called **edges**.

Convention: \boldsymbol{n} is the number of vertices, \boldsymbol{m} is the number of edges.

Data structures:

- **adjacency lists:** an array $A[1..n]$ s.t. $A[v]$ is the **linked list** of all edges connected to *v*. **2***m* list cells, total size $\Theta(n+m)$, but testing if an edge exists is not $O(1)$
- **adjacency matrix:** a $(0, 1)$ matrix *M* of size $n \times n$, with $M[v, w] = 1$ iff $\{v, w\}$ is an edge. size $\Theta(n^2)$, but testing if an edge exists is $O(1)$

Connected graphs, path, cycles, trees

Definition:

- **walk:** a sequence v_0, \ldots, v_k of vertices, with $\{v_i, v_{i+1}\}$ in *E* for $i = 0, \ldots, k 1$. length = number of steps = $k (k = 0$ is OK)
- **path:** a walk with distinct vertices
- **connected graph:** $G = (V, E)$ such that for all v, w in V, there is a path/walk $v \sim w$
- **cycle:** a walk v_0, \ldots, v_k, v_0 with $k \geq 2$ and v_i 's distinct $(k = 1$ would be v_0, v_1, v_0 , this is not a cycle)
- **tree:** a connected graph with no cycle (equiv: a connected graph with $m = n - 1$) (equiv: a graph with $m = n - 1$ and no cycle)
- **rooted tree:** a tree with a special vertex called **root**

Breadth-first search

Breadth-first exploration of a graph

```
BFS(G, s)
G: a graph with n vertices, given by adjacency lists
s: a vertex from G
1. let Q be an empty queue
2. let visited be an array of size n, with all entries set to false
3. enqueue(s, Q)
4. visited[s] \leftarrow true
5. while Q not empty do
6. v \leftarrow \text{dequeue}(Q)7. for all w neighbours of v do
8. if visited[w] is false<br>9. enquence(w, Q)\text{enqueue}(w, Q)10. visited[w] \leftarrow true
```
Runtime

Anaysis:

- each vertex is enqueued at most once
- so each vertex is dequeued at most once $O(n)$ for steps 5-6
- so each adjacency list is read at most once

For all *v*, write d_v = number of neighbours of v = length of $A[v]$ = **degree** of *v*. Then total cost at step 7 is

$$
O\left(\sum_v d_v\right) = O(m)
$$

cf. the adjacency array *A* has 2*m* cells **Total:** $O(n + m)$

Claim

For all vertices *v*, if visited *v* is true at the end, there is a walk $s \sim v$ in G

Proof. Let $s = v_0, \ldots, v_K$ be the vertices for which visited is set to true, in this order. We prove: **for all** *i*, there is a walk $s \rightarrow v_i$ by induction.

- OK for $i = 0$
- suppose true for v_0, \ldots, v_{i-1} .

when visited $[v_i]$ is set to true, we are examining the neighbours of a certain v_j , $j < i$. by assumption, there is a walk $s \sim v_i$

because $\{v_j, v_i\}$ is in *E*, there is a walk $s \sim v_i$

Claim

For all vertices *v*, if there is a walk $s \sim v$ in *G*, visited *v* is true at the end

Proof. Let $v_0 = s, \ldots, v_k = v$ be a walk $s \sim v$. We prove visited $[v_i]$ is true for all *i* by induction.

- visited[v_0] is true
- if visited $[v_i]$ is true, we will examine all neighbours v of v_i so at the end of Step 7, all visited $[v]$ will be true, for *v* neighbour of v_i in particular, visited $[v_{i+1}]$ will be true

Summary

For all vertices *v*, there is a walk $s \sim v$ in *G* if and only if visited[*v*] is true at the end

Applications

- testing if there is a walk $s \rightarrow v$
- testing if *G* is connected
- a spanning tree, if *G* is connected (tree that covers all vertices)

in $O(n+m)$.

Summary

For all vertices *v*, there is a walk $s \rightarrow v$ in *G* if and only if visited [*v*] is true at the end

Applications

- testing if there is a walk $s \sim v$
- testing if *G* is connected
- a spanning tree, if *G* is connected (tree that covers all vertices)

in $O(n+m)$.

Exercise

For a connected graph, $n-1 \leq m$, so $O(n+m) = O(m)$.

Keeping track of parents and levels

```
BFS(G, s)
1. let Q be an empty queue
2. let parent be an array of size n, with all entries set to \infty<br>3. let level be an array of size n, with all entries set to \inftylet level be an array of size n, with all entries set to \infty4. enqueue(s, Q)<br>5. parent[s] \leftarrow\mathsf{parent}[s] \leftarrow s6. level[s] \leftarrow 07. while Q not empty do
8. v \leftarrow \text{dequeue}(Q)9. for all w neighbours of v do
10. if parent[w] is NIL
11. enqueue(w, Q)
12. parent[w] \leftarrow v13. level[w] \leftarrow level[v] +1
```
BFS tree

Definition: the **BFS tree** *T* is the subgraph made of:

- all *w* such that parent[*w*] \neq **NIL**.
- all edges $\{w, \text{parent}[w]\}$, for *w* as above (except $w = s$)

Claim

The BFS tree *T* is a tree

Proof: *T* connected, n_s vertices, $n_s - 1$ edges (n_s) is the number of vertices reachable from *s*)

Remark: we make it a **rooted** tree by choosing *s* as root

Shortest paths from the BFS tree

Claim

If there is a walk $s \rightsquigarrow v$ in *G* then level[*v*] = dist(*s, v*)

Observation 1:

- dist(s, v) = length of the shortest path $s \rightarrow v$
- so dist (s, v) < level[*v*]
- want: $\text{level}[v] \leq \text{dist}(s, v)$

Observation 2: the levels in the queue are always of the form

$$
[\ell,\ldots,\ell] \text{ or } [\ell,\ldots,\ell,\ell+1,\ldots,\ell+1]
$$

so if we dequeue *v* before *w*, $\text{level}[v] \leq \text{level}[w]$

Shortest paths from the BFS tree

Claim

If there is a walk $s \rightsquigarrow v$ in *G* then level[*v*] = dist(*s, v*)

Proof

- take a shortest path $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = v$ $k = \text{dist}(s, v)$
- prove $|ev||v_i| \leq i$ for all i by induction
- OK for $i = 0$

Induction step: suppose OK for $i - 1$

- the parent of v_i is either v_{i-1} , or a vertex we processed before v_{i-1}
- so in any case, $\text{level}[\text{parent}(v_i)] \leq \text{level}(v_{i-1})$ previous slide
- lhs is level (v_i) 1, rhs is at most $i-1$ (induction assumption)
- done

 $i = k$ gives level[*v*] \leq dist(*s, v*)

Bipartite graphs

Definition

• a graph $G = (V, E)$ is **bipartite** if there is a partition $V = V_1 \cup V_2$ such that all edges have **one end in** V_1 and **one end in** V_2 .

Using BFS to test bipartite-ness

Claim.

Suppose *G* connected, run BFS from any *s*, and set

- V_1 = vertices with odd level
- V_2 = vertices with even level.

Then *G* is bipartite if and only all edges have one end in V_1 and one end in V_2 $(\text{testable in } \mathbf{O}(n+m))$

Using BFS to test bipartite-ness

Claim.

Suppose *G* connected, run BFS from any *s*, and set

- V_1 = vertices with odd level
- V_2 = vertices with even level.

Then *G* is bipartite if and only all edges have one end in V_1 and one end in V_2 $(\text{testable in } \mathbf{O}(m))$

Using BFS to test bipartite-ness

Claim.

Suppose *G* connected, run BFS from any *s*, and set

- V_1 = vertices with odd level
- V_2 = vertices with even level.

Then *G* is bipartite if and only all edges have one end in V_1 and one end in V_2 $(\text{testable in } \mathbf{O}(m))$

Proof. ← obvious.

For \implies , let W_1, W_2 be a bipartition. Because paths alternate between W_1, W_2 :

- V_1 (= vertices with odd level) is included in W_1 (say)
- V_2 (= vertices with even level) is included in W_2

So $V_1 = W_1$ and $V_2 = W_2$.

Subgraphs, connected components

Definition:

- **subgraph** of $G = (V, E)$: a graph $G' = (V', E')$, where
	- $\bullet \, V' \subset V$
	- $E' \subset E$, with all edges E' joining vertices from V'
- **connected component** of $G = (V, E)$
	- a connected subgraph of *G*
	- that is not contained in a larger connected subgraph of *G*

Let $G_i = (V_i, E_i)$, $i = 1, \ldots, s$ be the connected components of $G = (V, E)$.

- the V_i 's are a partition of V, with Σ
- the E_i 's are a partition of E , with Σ

 $n_i = |V_i|$

 $m_i = |E_i|$

Computing the connected components

Idea: add an outer loop that runs BFS on successive vertices

Complexity:

- each pass of BFS $O(n_i + m_i)$, if $G_i(V_i, E_i)$ is the *i*th connected component
- \bullet total $O(n+m)$