Overview

- **Graph Definitions Recap & Graph Connectivity Problems**
 - Definitions
 - Connectivity Problems

- **Search Techniques I: Breadth-First Search (BFS)**
 - Shortest Paths
 - Bipartite Graphs

- Acknowledgements
A graph $G(V, E)$ is the following data:
1. a set of vertices V (usually $V = [n]$)
A graph $G(V, E)$ is the following data:

1. a set of vertices V (usually $V = [n]$)
2. a set of edges (directed or undirected) E (usually $|E| = m$)

- if undirected, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset \binom{[n]}{2}$

- if directed, edges will be tuples (u, v), thus $E \subset V \times V$
A graph $G(V, E)$ is the following data:

1. A set of vertices V (usually $V = [n]$)
2. A set of edges (directed or undirected) E (usually $|E| = m$)
 - If undirected, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset [n]_2$
 - If directed, edges will be tuples (u, v), thus $E \subset V^2$

Note that in directed case order matters!
A graph $G(V, E)$ is the following data:

1. a set of vertices V (usually $V = [n]$)
2. a set of edges (directed or undirected) E (usually $|E| = m$)

 - if **undirected**, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset \binom{[n]}{2}$
 - if **directed**, edges will be tuples (u, v), thus $E \subset V^2$

Note that in directed case order matters!

Graph representations: let $G([n], E)$ be a graph

1. Adjacency matrix: $n \times n$ matrix A where

 \[
 A_{ij} = 1 \text{ iff } \{i, j\} \in E \quad \text{(undirected)}
 \]
 \[
 A_{ij} = 1 \text{ iff } (i, j) \in E \quad \text{(directed)}
 \]

2. Adjacency list:
Graph Definitions Recap & Graph Connectivity Problems
- Definitions
- Connectivity Problems

Search Techniques I: Breadth-First Search (BFS)
- Shortest Paths
- Bipartite Graphs

Acknowledgements
Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are **connected** in G if there is a path from u to v.
Graph Connectivity

Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v

A subset $S \subseteq V$ is connected if, for any $u, v \in S$, we have that u and v are connected
Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v
 - A subset $S \subseteq V$ is connected if, for any $u, v \in S$, we have that u and v are connected
 - A graph is connected if V is connected
Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are *connected* in G if there is a path from u to v.
- A subset $S \subseteq V$ is connected if, for any $u, v \in S$, we have that u and v are connected.
- A graph is connected if V is connected.
- A *connected component* is a maximally connected subset of vertices.

Important basic questions:

1. Is G connected?
2. Can we find all the connected components of G?
3. Given $u, v \in V$, are they connected?
4. Given $u, v \in V$, can we output a shortest path between u, v?
Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v

- A subset $S \subseteq V$ is connected if, for any $u, v \in S$, we have that u and v are connected
- A graph is connected if V is connected
- A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G

1. is G connected?
2. can we find all the connected components of G?
3. given $u, v \in V$, are they connected?
4. given $u, v \in V$, can we output a shortest path between u, v?
Graph Definitions Recap & Graph Connectivity Problems
- Definitions
- Connectivity Problems

Search Techniques I: Breadth-First Search (BFS)
- Shortest Paths
- Bipartite Graphs

Acknowledgements
Breadth-First Search

- **Input:** graph $G(V,E)$, vertex $s \in V$ (adjacency list)
- **Output:** all vertices in G reachable from s
Breadth-First Search

- **Input:** graph $G(V, E)$, vertex $s \in V$ (adjacency list)
- **Output:** all vertices in G reachable from s
- **BFS Algorithm:**
 1. **Initialization:**
 - array $\text{visited}[v] = 0$ for all $v \in V$.
 - queue $Q = \emptyset$
 2. **Start:**
 - $\text{ENQUEUE}(Q, s)$
 - $\text{visited}[s] = 1$
 3. **While** $Q \neq \emptyset$:
 - $u = \text{DEQUEUE}(Q)$
 - for each neighbor v of u:
 - if $\text{visited}[v] = 0$ then $\text{ENQUEUE}(Q, v)$ and $\text{visited}[v] = 1$
Initialization costs $O(n)$

Each vertex v is enqueued at most once

if we traverse it and $\text{visited}[v] = 0$

when we dequeue a vertex v, run loop for $\deg(v)$ iterations

Thus, running time is:

$$O \left(n + \sum_{v \in V} \deg(v) \right) = O(m + n)$$
Correctness & Structural Lemma

Lemma (Connectivity)

\(G \) has an \(s \) – \(t \) path iff \(\text{visited}[t] = 1 \) at the end of BFS algorithm.
Correctness & Structural Lemma

Lemma (Connectivity)

G has an $s - t$ path iff $\text{visited}[t] = 1$ at the end of BFS algorithm.

- $\exists s - t$ path \Rightarrow $\text{visited}[t] = 1$
 1. Take path $s = u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k = t$
 2. By induction, each u_i is added to Q and thus we have $\text{visited}[u_i] = 1$
 - If u_i not added until we visit u_{i-1}, then we enqueue it when visit u_{i-1}

Bonus:
- If graph is connected: $\text{visited}[v] = 1$ for all $v \in V$ connected component containing s: return all vertices $v \in V$ with $\text{visited}[v] = 1$ if there is $s - t$ path for vertex $t \in V$: just check if $\text{visited}[t] = 1$

Can find all connected components:
- once BFS finishes, scan visited array to find a vertex u that hasn't been visited yet, run BFS starting from this vertex u iterate until all vertices are visited
Correctness & Structural Lemma

Lemma (Connectivity)

\(G \) has an \(s - t \) path iff \(\text{visited}[t] = 1 \) at the end of BFS algorithm.

- \(\exists \ s - t \) path \(\Rightarrow \) \(\text{visited}[t] = 1 \)
 1. Take path \(s = u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k = t \)
 2. By induction, each \(u_i \) is added to \(Q \) and thus we have \(\text{visited}[u_i] = 1 \)
 If \(u_i \) not added until we visit \(u_{i-1} \), then we enqueue it when visit \(u_{i-1} \)

- \(\text{visited}[t] = 1 \) \(\Rightarrow \exists \ s - t \) path
 1. **Idea:** trace back an \(s - t \) path from algorithm
 2. Let \(u_0 \) be vertex where \(\text{visited}[t] \) was set to 1, and inductively, let \(u_i \) be
 vertex where \(\text{visited}[u_{i-1}] \) was set to 1.
 3. Process has to stop, as we enqueue each vertex at most once, and can
 only stop at \(s \) (as process stops when queue is empty).

Bonus:

Can also answer if graph is connected: \(\text{visited}[v] = 1 \) for all \(v \in V \) connected component containing \(s \): return all vertices \(v \in V \) with \(\text{visited}[v] = 1 \) if there is an \(s - t \) path for vertex \(t \in V \): just check if \(\text{visited}[t] = 1 \)

Can find all connected components:

Once BFS finishes, scan visited array to find a vertex \(u \) that hasn't been
visited yet, run BFS starting from this vertex \(u \) iterate until all vertices are visited.
Lemma (Connectivity)

\[G \text{ has an } s - t \text{ path iff } \text{visited}[t] = 1 \text{ at the end of BFS algorithm.} \]

- Correctness of algorithm follows from lemma
Lemma (Connectivity)

\(G \) has an \(s \) – \(t \) path iff \(\text{visited}[t] = 1 \) at the end of BFS algorithm.

- Correctness of algorithm follows from lemma
- **Bonus**: can also answer
 - if graph is connected: \(\text{visited}[v] = 1 \) for all \(v \in V \)
 - connected component containing \(s \): return all vertices \(v \in V \) with \(\text{visited}[v] = 1 \)
 - if there is \(s \) – \(t \) path for vertex \(t \in V \): just check if \(\text{visited}[t] = 1 \)
Correctness & Structural Lemma

Lemma (Connectivity)

G has an $s - t$ path iff $\text{visited}[t] = 1$ at the end of BFS algorithm.

- Correctness of algorithm follows from lemma
- **Bonus:** can also answer
 - if graph is connected: $\text{visited}[v] = 1$ for all $v \in V$
 - connected component containing s: return all vertices $v \in V$ with $\text{visited}[v] = 1$
 - if there is $s - t$ path for vertex $t \in V$: just check if $\text{visited}[t] = 1$
- Can find all connected components:
 - once BFS finishes, scan visited array to find a vertex u that hasn’t been visited yet,
 - run BFS starting from this vertex u
 - iterate until all vertices are visited
BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
 1. Let the “parent of v,” denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets $\text{visited}[v] = 1$ while looping through u.
 2. Let $T \subset E$ be the set of edges $\{v, p[v]\}$
 3. Let $U \subset V$ be the connected component of s
BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
 1. Let the “parent of v,” denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets $\text{visited}[v] = 1$ while looping through u.
 2. Let $T \subseteq E$ be the set of edges $\{v, p[v]\}$
 3. Let $U \subseteq V$ be the connected component of s

- The graph (U, T) is a tree, called the **BFS tree**
BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
 1. Let the “parent of v,” denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets $\text{visited}[v] = 1$ while looping through u.
 2. Let $T \subset E$ be the set of edges $\{v, p[v]\}$
 3. Let $U \subset V$ be the connected component of s

- The graph (U, T) is a tree, called the **BFS tree**

- Why is it a tree?
 - (U, T) is connected and and $|T| = |U| - 1$ by our proof of the lemma
 - edges cannot form a cycle, since each parent must appear before its children in the algorithm
Augmented Breadth-First Search

(Augmented) BFS Algorithm:

1. **Initialization:**
 - array visited[v] = 0 for all \(v \in V \).
 - queue \(Q = \emptyset \)
 - array \(p[v] = \text{NULL} \) for all \(v \in V \)

2. **Start:**
 - ENQUEUE(\(Q, s \))
 - visited[s] = 1

3. **While** \(Q \neq \emptyset \):
 - \(u = \text{DEQUEUE}(Q) \)
 - for each neighbor \(v \) of \(u \):
 - if visited[\(v \)] = 0 then:
 - ENQUEUE(\(Q, v \))
 - visited[\(v \)] = 1
 - \(p[v] = u \)
Another useful property of the BFS algorithm is that we obtain *shortest paths* between \(s \) and any other vertex \(u \in V \)!\(^1\)

\(^1\)For unweighted graphs.
Another useful property of the BFS algorithm is that we obtain shortest paths between \(s \) and any other vertex \(u \in V \! \).

Idea: can simply add “levels” to the BFS algorithm.

- Each vertex \(v \) gets a level \(\ell(v) \). (initially set to \(\infty \))
- Set \(\ell(s) = 0 \), and whenever add \(v \) to queue, set \(\ell(v) = \ell(p[v]) + 1 \)
- Induction: level of a vertex equals its distance to \(s \), since each vertex
Augmented Breadth-First Search

(Augmented) BFS Algorithm:

1. Initialization:
 - array visited[v] = 0 for all v ∈ V.
 - queue Q = 0
 - array p[v] = NULL for all v ∈ V
 - array ℓ[v] = ∞ for all v ∈ V

2. Start:
 - ENQUEUE(Q, s)
 - visited[s] = 1
 - ℓ[s] = 0

3. While Q ≠ ∅:
 - u = DEQUEUE(Q)
 - for each neighbor v of u:
 - if visited[v] = 0 then:
 - ENQUEUE(Q, v)
 - visited[v] = 1
 - p[v] = u
 - ℓ[v] = ℓ[u] + 1
Bipartite Graphs

Bipartite Graph: we say that $G(V, E)$ is a bipartite graph if we can partition $V = L \sqcup R$ such that:

1. $L \cap R = \emptyset$
2. E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$

Can use BFS algorithm to check whether graph is bipartite. Simply run BFS and partition $V = L \sqcup R$ with:

- $L := \{u \in V | \ell(u) \equiv 0 \text{ mod } 2\}$
- $R := \{u \in V | \ell(u) \equiv 1 \text{ mod } 2\}$

Run BFS again and check if there is an edge between two vertices of L or two vertices of R. If there is, return non-bipartite. Else, return bipartite.
Bipartite Graphs

- **Bipartite Graph**: we say that $G(V, E)$ is a bipartite graph if we can partition $V = L \sqcup R$ such that:
 1. $L \cap R = \emptyset$
 2. E only has edges of the form \{u, v\} where $u \in L$ and $v \in R$

- Can use BFS algorithm to check whether graph is bipartite
Bipartite Graphs

- **Bipartite Graph**: we say that $G(V, E)$ is a bipartite graph if we can partition $V = L \sqcup R$ such that:
 1. $L \cap R = \emptyset$
 2. E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$

- Can use BFS algorithm to check whether graph is bipartite

- Simply run BFS and partition $V = L \sqcup R$ with:

 $L := \{u \in V \mid \ell(u) \equiv 0 \mod 2\}$ and $R := \{u \in V \mid \ell(u) \equiv 1 \mod 2\}$

- Run BFS again and check if there is an edge between two vertices of L or two vertices of R.
 - If there is, return non-bipartite
 - Else, return bipartite
Bipartite Graphs

- **Bipartite Graph:** we say that $G(V, E)$ is a bipartite graph if we can partition $V = L \sqcup R$ such that:
 1. $L \cap R = \emptyset$
 2. E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$

- Can use BFS algorithm to check whether graph is bipartite
- Simply run BFS and partition $V = L \sqcup R$ with:
 \[L := \{ u \in V \mid \ell(u) \equiv 0 \mod 2 \} \quad \text{and} \quad R := \{ u \in V \mid \ell(u) \equiv 1 \mod 2 \} \]
- Run BFS again and check if there is an edge between two vertices of L or two vertices of R.
 - If there is, return non-bipartite
 - Else, return bipartite
Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R
Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R
- Hard case: is the algorithm correct when we return NO?

 Graph bipartite \Leftrightarrow NO odd cycles1

1MATH 239/249
Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R
- Hard case: is the algorithm correct when we return NO?

 Graph bipartite \iff NO odd cycles

- Let T be BFS tree of G with root s.
 - Suppose we find an edge between vertices $u, v \in L$ (w.l.o.g.)
 - Let w be lowest common ancestor of u, v in T, and let P_{uw}, P_{wv} be the paths $u \rightarrow w$ and $w \rightarrow v$ in T.
 - Consider cycle $C := \{u, v\} \cup P_{uw} \cup P_{wv}$.
 - Since $\ell(u), \ell(v) \equiv 0 \mod 2$ and $|P_{uw}| = \ell(u) - \ell(w)$, $|P_{wv}| = \ell(v) - \ell(w)$, we have
 $$|P_{uw}| \equiv |P_{wv}| \equiv -\ell(w) \mod 2$$
 - Thus $|P_{uw}| + |P_{wv}| + 1 \equiv 1 \mod 2 \Rightarrow C$ is odd cycle.
Remarks

- Above can be modified to give algorithmic proof that graph is bipartite iff no odd cycles
- Linear time algorithm to find odd cycle of undirected graph
- Having odd cycle is a “short proof” of non-bipartiteness (and easy!)
Acknowledgement

- Based on Prof. Lau’s lecture 05

 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
MIT Press

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley