Overview

- Depth-First Search
 - Basic Idea
 - Algorithm
 - DFS Tree
 - Start Time and Finish Time
 - Cuts

- Acknowledgements
Basic Idea

- Exploring a maze
- Would like to explore a full path of the maze, before backtracking and trying the other paths
Depth-First Search Algorithm

- **Input:** Graph $G(V, E)$, vertex $s \in V$
- **Output:** connected component of s

Main algorithm:
1. Initialize $\text{visited}[v] = 0$ for all $v \in V$
2. Set $\text{visited}[s] = 1$
3. EXPLORE(s, visited)

Runtime analysis:
- Initialization takes $O(n)$ time.
- We call EXPLORE at most once per vertex $u \in V$, and once called, we will run through a loop of length $\deg(u)$ and perform $O(1)$ operations before we call EXPLORE on another vertex.

$O(n) + \sum_{u \in V} \deg(u) = O(n + m)$
Depth-First Search Algorithm

- **Input:** Graph $G(V, E)$, vertex $s \in V$
- **Output:** connected component of s
- Easiest way to describe algorithm is recursively.
- Subroutine given by
- **EXPLORE**(u, visited):
 1. for each $v \in N(u)$:
 - If visited[v] = 0, then visited[v] = 1 and **EXPLORE**(v, visited).
Depth-First Search Algorithm

- **Input:** Graph $G(V, E)$, vertex $s \in V$
- **Output:** connected component of s

EXPLORE(u, visited):
- for each $v \in N(u)$:
 - If visited[v] = 0, then visited[v] = 1 and EXPLORE(v, visited).

Main algorithm:
- initialize visited[v] = 0 for all $v \in V$
- set visited[s] = 1
- EXPLORE(s, visited)

Runtime analysis:
Initialization takes $O(n)$ time. We call EXPLORE at most once per vertex $u \in V$, and once called, we will run through a loop of length $\deg(u)$ and perform $O(1)$ operations before we call EXPLORE on another vertex.

$O(n) + \sum_{u \in V} \deg(u) = O(n + m)$
Depth-First Search Algorithm

- **Input:** Graph \(G(V, E) \), vertex \(s \in V \)
- **Output:** connected component of \(s \)
- \(\text{EXPLORE}(u, \text{visited}) \):
 1. for each \(v \in N(u) \):
 - If \(\text{visited}[v] = 0 \), then \(\text{visited}[v] = 1 \) and \(\text{EXPLORE}(v, \text{visited}) \).
- **Main algorithm:**
 1. initialize \(\text{visited}[v] = 0 \) for all \(v \in V \)
 2. set \(\text{visited}[s] = 1 \)
 3. \(\text{EXPLORE}(s, \text{visited}) \)
- **Runtime analysis:** initialization takes \(O(n) \) time. We call \(\text{EXPLORE} \) at most once per vertex \(u \in V \), and once called, we will run through a loop of length \(\deg(u) \) and perform \(O(1) \) operations before we call \(\text{EXPLORE} \) on another vertex.

\[
O \left(n + \sum_{u \in V} \deg u \right) = O(n + m)
\]
Connectivity

Lemma (Connectivity)

There is an \(s - t \) path in \(G \) \iff \(\text{visited}[t] = 1 \) at the end of DFS.

- Same proof idea as we did in BFS

(exercise)
(Augmented) Depth-First Search Algorithm

- **EXPLORE**(\(u\), visited, \(p\)):
 1. for each \(v \in N(u)\):
 - If visited[\(v\)] = 0, then
 - visited[\(v\)] = 1, \(p[v] = u\)
 - and EXPLORE(\(v\), visited, \(p\)).

- **Main algorithm**:
 1. initialize visited[\(v\)] = 0 and \(p[v] = NULL\) for all \(v \in V\)
 2. set visited[\(s\)] = 1
 3. EXPLORE(\(s\), visited, \(p\))
DFS Tree

- In the same way that BFS gave us a tree, DFS will also give us a tree \(T \), with edges \((u, p(u))\) for all \(u \) in the connected component of \(s \).
- This tree has different properties than the BFS tree

 In particular, **NO** shortest paths.
DFS Tree

- In the same way that BFS gave us a tree, DFS will also give us a tree T, with edges $(u, p(u))$ for all u in the connected component of s.
- This tree has different properties than the BFS tree.
 - In particular, NO shortest paths.
- What can we use it for?
DFS Tree

- In the same way that BFS gave us a tree, DFS will also give us a tree T, with edges $(u, p(u))$ for all u in the connected component of s.
- This tree has different properties than the BFS tree
 - In particular, NO shortest paths.

- Helpful to think of this tree as giving an “orientation” of the edges of the graph
 - Starting vertex s is the root of T
 - A vertex $u \in V$ is the parent of v if the edge $\{u, v\} \in T$ and u closer to the root
 - Vertex u is the ancestor of v if u closer to root and u is in the $s – v$ path in T. We say v is a descendant of u and that u, v are related.
 - A non-tree edge $\{u, v\}$ will be called back edge if u is the ancestor of v (or vice-versa).
DFS Tree

- In the same way that BFS gave us a tree, DFS will also give us a tree \(T \), with edges \((u, p(u))\) for all \(u \) in the connected component of \(s \).
- This tree has different properties than the BFS tree

 In particular, NO shortest paths.

- Helpful to think of this tree as giving an “orientation” of the edges of the graph

 - Starting vertex \(s \) is the root of \(T \)
 - A vertex \(u \in V \) is the parent of \(v \) if the edge \(\{u, v\} \in T \) and \(u \) closer to the root
 - Vertex \(u \) is the ancestor of \(v \) if \(u \) closer to root and \(u \) is in the \(s \rightarrow v \) path in \(T \). We say \(v \) is a descendant of \(u \) and that \(u, v \) are related.
 - A non-tree edge \(\{u, v\} \) will be called back edge if \(u \) is the ancestor of \(v \) (or vice-versa).

- What are relationships between related vertices in this tree?
(Augmented) Depth-First Search Algorithm (again)

EXPLORE(\(u, \text{ visited}, p, S, F, \tau\)):

1. \(S[u] = \tau\), and \(\tau \leftarrow \tau + 1\)
2. for each \(v \in N(u)\):
 - If \(\text{visited}[v] = 0\), then
 \(\text{visited}[v] = 1\), \(p[v] = u\)
 and EXPLORE(\(v, \text{ visited}, p, S, F, \tau\)).
3. \(F[u] = \tau\) and \(\tau \leftarrow \tau + 1\)

Main algorithm:

1. initialize \(\text{visited}[v] = 0\), \(S[v] = F[v] = \infty\) and \(p[v] = \text{NULL}\) for all \(v \in V\)
2. set \(\text{visited}[s] = 1\) and \(\tau = 1\)
3. EXPLORE(\(s, \text{ visited}, p, S, F, \tau\))
Lemma (Parenthesis lemma)

For any pair $u, v \in V$, the intervals $[S(u), F(u)]$ and $[S(v), F(v)]$ are either disjoint or one is contained in the other (the descendant is contained in the ancestor).

- Follows easily from augmented algorithm, as we only finish an ancestor after going through all its descendants.
DFS Tree Properties

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G, all non-DFS-tree edges are back edges.
A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G, all non-DFS-tree edges are back edges.

- Suppose there is edge $\{u, v\} \in E$
- W.l.o.g. can assume u visited by DFS before v. Thus, $S[u] < S[v]$
A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G, all non-DFS-tree edges are back edges.

- Suppose there is edge $\{u, v\} \in E$
- W.l.o.g. can assume u visited by DFS before v. Thus, $S[u] < S[v]$
- Since $v \in N(u)$, v will be explored before EXPLORE(u) is finished, thus $S[v] < F[u]$
A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G, all non-DFS-tree edges are back edges.

- Suppose there is edge \(\{u, v\} \in E \)
- W.l.o.g. can assume \(u \) visited by DFS before \(v \). Thus, \(S[u] < S[v] \)
- Since \(v \in N(u) \), \(v \) will be explored before \(\text{EXPLORE}(u) \) is finished, thus \(S[v] < F[u] \)
- By parenthesis lemma, we must have \(F[v] < F[u] \). Hence \(v \) is descendent of \(u \).
Depth-First Search
- Basic Idea
- Algorithm
- DFS Tree
- Start Time and Finish Time
- Cuts

Acknowledgements
Definitions

- A vertex $u \in V$ is a **cut vertex**, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex).

- An edge $\{u, v\}$ is a **cut edge** if removing this edge we disconnect the graph (also known as a bridge).

We will use the DFS tree to identify all cut vertices and edges.

Observation: the only way vertex u is a cut vertex is if there are no back edges from a subtree rooted at a child of u to an ancestor of u.

One way to compute the above is to keep track of “earliest” vertex in T connected by a back edge to subtree T_u: $E[u] = \min S[u], \min w \in T_u S[z]$ s.t. $\{w, z\}$ back edge & u descendant of z.

Definitions

- A vertex $u \in V$ is a **cut vertex**, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex).

- An edge $\{u, v\}$ is a **cut edge** if removing this edge we disconnect the graph (also known as a bridge).

- We will use the DFS tree to identify all cut vertices and edges.
Definitions

- A vertex \(u \in V \) is a **cut vertex**, if removing \(u \) from \(G \) (and its edges) we disconnect \(G \) (also known as articulation point/separating vertex).
- An edge \(\{u, v\} \) is a **cut edge** if removing this edge we disconnect the graph (also known as a bridge).

- We will use the DFS tree to identify all cut vertices and edges.
- **Observation:** only way vertex \(u \) is a cut vertex is if there are no back edges from a subtree rooted at a child of \(u \) to an **ancestor** of \(u \).
Definitions

- A vertex $u \in V$ is a **cut vertex**, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex).
- An edge $\{u, v\}$ is a **cut edge** if removing this edge we disconnect the graph (also known as a bridge).

We will use the DFS tree to identify all cut vertices and edges.

Observation: only way vertex u is a cut vertex is if there are no back edges from a subtree rooted at a child of u to an ancestor of u.

(One way to) compute the above is to keep track of “earliest” vertex in T connected by a back edge to subtree T_u

$$E[u] = \min \left\{ S[u], \min_{w \in T_u} \left(S[z] \text{ s.t. } \{w, z\} \text{ back edge } \& \ u \text{ descendant of } z \right) \right\}$$
Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.
Cut vertex lemmas

Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.

Lemma (Cut vertex - non-root)

For non-root vertex $u \in T$, u is a cut vertex iff there is subtree $T_v \subset T_u$ with v descendant of u, with no back edges to an ancestor of u.
Cut vertex lemmas

Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.

Lemma (Cut vertex - non-root)

For non-root vertex $u \in T$, u is a cut vertex iff there is subtree $T_v \subset T_u$ with v descendant of u, with no back edges to an ancestor of u.

Lemma (Cut vertex - root)

If $s \in T$ is the root of T, then s is a cut vertex iff s has two children.
(Augmented) DFS Algorithm (again, for real?)

- **EXPLORE**(*u*, visited, *p*, *S*, *F*, *τ*, *E*):
 1. *S*[u] = *τ*, and *τ* ← *τ* + 1
 2. for each *v* ∈ *N*(u):
 - If visited[*v*] = 0, then
 visited[*v*] = 1, *p*[v] = *u*
 and EXPLORE(*v*, visited, *p*, *S*, *F*, *τ*, *E*).
 3. *F*[u] = *τ*, *τ* ← *τ* + 1 and

 \[E[u] = \min \left\{ S[u], \min_{\{uw\} \text{back edge}} S[w], \min_{\text{v child of } u} E[v] \right\}\]

- **Main algorithm**:
 1. initialize visited[*v*] = 0, *S*[v] = *F*[v] = *E*[v] = ∞ and *p*[v] = NULL for all *v* ∈ *V*
 2. set visited[s] = 1 and *τ* = 1
 3. EXPLORE(s, visited, *p*, *S*, *F*, *τ*, *E*)
Correctness of augmented algorithm

- All that is left to prove is that above algorithm computes $E[u]$ correctly for each $u \in V$
- Can prove this by induction on depth of the tree, starting from the leaves. We will make sure to prove that $E[u]$ computes the starting time of the earliest direct neighbor of T_u.
- Inductive step: if have computed $E[v]$ correctly for every non-root of T_u, then step 3 of the EXPLORE algorithm will correctly compute $E[u]$
Finding cut vertices

Lemma

Vertex $u \in T$ is not a cut vertex iff $S[u] > E[v]$ for all children v of u in T.

- $E[v]$ captures the start time of the earliest vertex which directly connects to T_v (via a back edge).
- $w \in T_v$ and $w, v \in T_u \Rightarrow E[w] \geq E[v]$, as back edge from T_w to ancestor of u is a back edge from T_v to ancestor of u hence
- $S[u] > E[v] \Rightarrow$ there is a back edge from T_v is an ancestor of u
- By previous bullet, enough to focus on children of u
- If every children v of u has $E[v] < S[u]$, then T_v is connected in $G \setminus \{u\}$. Thus u not cut vertex.
Finding cut vertices

Lemma

Vertex $u \in T$ is not a cut vertex iff $S[u] > E[v]$ for all children v of u in T.

- $E[v]$ captures the start time of the earliest vertex which directly connects to T_v (via a back edge).
- $w \in T_v$ and $w, v \in T_u \Rightarrow E[w] \geq E[v]$, as back edge from T_w to ancestor of u is a back edge from T_v to ancestor of u hence
- $S[u] > E[v] \Rightarrow$ there is a back edge from T_v is an ancestor of u.
- By previous bullet, enough to focus on children of u.
- If every children v of u has $E[v] < S[u]$, then T_v is connected in $G \setminus \{u\}$. Thus u not cut vertex.
- Other direction analogous.
Acknowledgement

- Based on Prof. Lau's lecture 06

 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L06.pdf

- For non-recursive version of DFS, see [Kleinberg Tardos 2006]
References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
MIT Press

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley