CS 341: Algorithms

Lecture 12: Directed graphs

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Directed graphs

Directed graphs basics

Definition:

- $G = (V, E)$ as in the undirected case, with the difference that edges are **(directed)** pairs (v, w)
	- edges also called **arcs**
	- we allow **loops**, with $v = w$
- walks, paths and cycles as before; here, cycles have at least one edge
- a **directed acyclic graph** (DAG) is a directed graph with no cycle

BFS and DFS for directed graphs

The algorithms work **without any modification**.

BFS: still get shortest paths

DFS: still have

- a partition of *V* into **vertex-disjoint trees** T_1, \ldots, T_k
- white path lemma (when we start exploring a vertex *v*, any *w* with an **unvisited path** $v \rightarrow w$ becomes a descendant of *v*)
- properties of start and finish times

New for DFS:

• there can exist edges connecting the trees *Tⁱ*

Classification of edges

Suppose we have a DFS forest. Edges of *G* are one of the following:

- **tree edges**
- **back edges:** from descendant to ancestor
- **forward edges:** from ancestor to descendant (but not tree edge)
- **cross edges:** all others

(depends on the order of vertices we chose in the main DFS loop)

Classification of edges

```
explore(v)
1. visited[v] = true
2. start[v] = t, t++
3. for all w neighbour of v do
4. if visited[w] = false
5. explore(w) (v, w) tree edge
6. finish[v] = t, t<sup>++</sup>
```
If *w* **was visited**:

- if *w* not finished, (*v, w*) **back edge**
- else if $\textsf{start}[v] < \textsf{start}[w] < \textsf{finish}[w]$, (v, w) forward edge
- else, $\textsf{start}[w] < \textsf{finish}[w] < \textsf{start}[v]$, (v, w) cross edge

Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS forest

Proof

- Suppose there is a back edge (*v, w*). Then *v* is a descendant of *w*, so there is a path $w \rightsquigarrow v$, and a cycle $w \rightsquigarrow v \rightarrow w$
- Suppose there is a cycle v_1, \ldots, v_k, v_1 . Up to renumbering, assume we find v_1 first in the DFS.

Starting from v_1 , we will reach v_k (white path lemma). We check the edge (v_k, v_1) , and v_1 is not finished. So back edge.

Consequence: acyclicity test in $O(n + m)$

Topological ordering

Definition: Suppose $G = (V, E)$ is a DAG. A **topological order** is an ordering \lt of V such that for any edge (v, w) , we have $v < w$.

Remark: exists a topological order **iff** *G* is a DAG.

From a DFS forest

Observation:

- start times do not help
- finish times do, but we have to reverse their order

From a DFS forest

Claim

Assume *G* is a DAG. Suppose that *V* is ordered using the reverse of the finishing \times *v* \iff **finish** $[w] \leq$ **finish** $[v]$.

This is a topological order.

Proof. Have to prove: for any edge (v, w) , **finish** $[w] <$ **finish** $[v]$.

- if we discover *v* **before** *w*, *w* will become a descendant of *v* (white path lemma), and we finish exploring it before we finish *v*.
- if we discover *w* before *v*, because there is no path $w \sim v$ (*G* is a DAG), we will finish *w* before we start *v*.

Consequence: topological order in $O(n + m)$.

Testing strong connectivity

Definition. A directed graph *G* is **strongly connected** if for all v, w in G , there is a path $v \rightarrow w$ (and thus a path $w \rightarrow v$).

Algorithm:

- call **explore twice**, starting from a same vertex *s*
- edges reversed the second time

Correctness:

- first run tells whether for all *v*, there is a path $s \rightarrow v$
- second one tells whether for all *v*, there is a path $s \rightarrow v$ in the reverse graph (which is a path $v \rightsquigarrow s$ in G)

Consequence: test in $O(n+m)$

Structure of directed graphs

Definition: a **strongly connected component** of *G* is

- a subgraph of *G*
- which is strongly connected
- but not contained in a larger strongly connected subgraph of *G*.

Exercise

v and *w* are in the same strongly connected component if and only if there are paths $v \rightsquigarrow w$ and $w \rightsquigarrow v$.

Exercise

The vertices of strongly connected components form a partition of *V* .

Structure of directed graphs

A directed graph *G* can be seen as a **DAG** of disjoint **strongly connected components**.

Structure of directed graphs

A directed graph *G* can be seen as a **DAG** of disjoint **strongly connected components**.

Kosaraju's algorithm for strongly connected components

Definition: for a directed graph $G = (V, E)$, the **reverse** (or **transpose**) graph $G^T = (V, E^T)$ is the graph with same vertices, and reversed edges.

> **SCC**(*G*) 1. run a DFS on *G* and record finish times 2. run a DFS on *G^T* , with vertices ordered in **decreasing finish time** Γ return the trees in the DFS forest of G^T

Complexity: $O(n + m)$ (don't forget the time to reverse *G*)

Exercise

check that the strongly connected components of G and G^T are the same

The idea behind the algorithm

Claim

If *S* and *T* are two strongly connected components of *G* and there is an edge $S \to T$, **latest finish time in** *S >* **latest finish time in** *T*

Proof:

- if we visit a vertex in *S* first, all vertices in *T* will be its descendants
- if we visit a vertex in *T* first, we won't reach *S* before *T* is finished.

Consequence:

- start second run from the last-finished vertex *s*
- in *G^T* , every vertex reachable from *s* is in the same strongly connected component
- continue