Lecture 12: Graph Algorithms III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 24, 2023
Overview

- Directed Graphs
 - Reachability
 - BFS/DFS trees
 - Directed Acyclic Graphs (DAGs) & Topological Sort
 - Strongly Connected Components

- Acknowledgements
Directed Graphs

- Now each edge has a direction, and we say that \((u, v)\) goes from \(u\) (tail) to \(v\) (head)

- Notation:
 - \(\text{deg}_{\text{in}}(u)\) = number of vertices \(s \in V\) such that \((s, u) \in E\) (in-degree/fanin)
 - \(\text{deg}_{\text{out}}(u)\) = number of vertices \(t \in V\) such that \((u, t) \in E\) (out-degree/fanout)
Directed Graphs

Now each edge has a direction, and we say that \((u, v)\) goes from \(u\) (tail) to \(v\) (head)

Useful to model situations with asymmetry:
- web page links
- one-way streets
- dependencies in parallel computation

\[\text{deg}_{\text{in}}(u) = \# \text{vertices } s \in V \text{ such that } (s, u) \in E \] (in-degree/fanin)

\[\text{deg}_{\text{out}}(u) = \# \text{vertices } t \in V \text{ such that } (u, t) \in E \] (out-degree/fanout)
Directed Graphs

- Now each edge has a direction, and we say that (u, v) goes from u (tail) to v (head).
- Useful to model situations with asymmetry:
 - web page links
 - one-way streets
 - dependencies in parallel computation
- Notation:
 - $\text{deg}_{\text{in}}(u) = \# \text{ vertices } s \in V \text{ such that } (s, u) \in E$ (in-degree/fanin)
 - $\text{deg}_{\text{out}}(u) = \# \text{ vertices } t \in V \text{ such that } (u, t) \in E$ (out-degree/fanout)
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is \textit{reachable} from s, if there is a directed $s - t$ path in G.
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is *reachable* from s, if there is a directed $s \rightarrow t$ path in G.
- G is *strongly connected* if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t.

We are interested in the following reachability/structural questions:

1. Given $s \in V$, what are the vertices reachable from s?
2. Is a given graph strongly connected?
3. What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find $O(n + m)$ time algorithms for these and other problems.
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is *reachable* from s, if there is a directed $s \rightarrow t$ path in G
- G is *strongly connected* if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is \textit{reachable} from s, if there is a directed $s \rightarrow t$ path in G.
- G is \textit{strongly connected} if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t.
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s.
- $S \subset V$ is a \textit{strongly connected component} (SCC) if S is a maximal strongly connected set.
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.
- t is \textit{reachable} from s, if there is a directed $s \rightarrow t$ path in G.
- G is \textit{strongly connected} if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t.
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s.
- $S \subset V$ is a \textit{strongly connected component} (SCC) if S is a maximal strongly connected set.
- We are interested in following reachability/structural questions:
 1. Given $s \in V$ what are the vertices reachable from s?
 2. Is a given graph strongly connected?
 3. What are all strongly connected components in a given directed graph?
Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is **reachable** from s, if there is a directed $s \to t$ path in G
- G is **strongly connected** if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s
- $S \subset V$ is a **strongly connected component** (SCC) if S is a maximal strongly connected set

We are interested in following reachability/structural questions:

1. Given $s \in V$ what are the vertices reachable from s?
2. Is a given graph strongly connected?
3. What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find $O(n + m)$ time algorithms for these and other problems.
Checking Reachability

- **Input:** directed graph $G(V, E)$, $s \in V$
- **Output:** all vertices reachable from s
Checking Reachability

- **Input:** directed graph $G(V,E)$, $s \in V$
- **Output:** all vertices reachable from s
- Could use either **BFS** or **DFS** for this question. We will use DFS.
Checking Reachability

- **Input:** directed graph $G(V, E)$, $s \in V$
- **Output:** all vertices reachable from s

EXPLORE(u, visited, p, S, F, τ):

1. $S[u] = \tau$, and $\tau \leftarrow \tau + 1$
2. for each $v \in N_{out}(u)$:
 - If visited[v] = 0, then
 - visited[v] = 1, $p[v] = u$
 - and EXPLORE(v, visited, p, S, F, τ).
3. $F[u] = \tau$, $\tau \leftarrow \tau + 1$ and
Checking Reachability

- **Input:** directed graph $G(V, E)$, $s \in V$
- **Output:** all vertices reachable from s

EXPLORE(u, visited, p, S, F, τ):

1. $S[u] = \tau$, and $\tau \leftarrow \tau + 1$
2. for each $v \in N_{out}(u)$:
 - If visited[v] = 0, then
 - visited[v] = 1, $p[v] = u$
 - and EXPLORE(v, visited, p, S, F, τ).
3. $F[u] = \tau$, $\tau \leftarrow \tau + 1$ and

Main algorithm:

1. initialize

 visited[v] = 0, $S[v] = F[v] = \infty$ and $p[v] = \text{NULL}$
 for all $v \in V$
2. set visited[s] = 1 and $\tau = 1$
3. EXPLORE(s, visited, p, S, F, τ)

Time complexity $O(n + m)$, and similarly to undirected case, t reachable iff visited[t] = 1.
Checking Reachability

- **Input:** directed graph $G(V, E)$, $s \in V$
- **Output:** all vertices reachable from s
- EXPLORE(u, visited, p, S, F, τ):
 1. $S[u] = \tau$, and $\tau \leftarrow \tau + 1$
 2. for each $v \in N_{out}(u)$:
 - If visited[v] = 0, then visited[v] = 1, $p[v] = u$
 - and EXPLORE(v, visited, p, S, F, τ).
 3. $F[u] = \tau$, $\tau \leftarrow \tau + 1$ and
- Main algorithm:
 1. initialize

 visited[v] = 0, $S[v] = F[v] = \infty$ and $p[v] = \text{NULL}$

 for all $v \in V$
 2. set visited[s] = 1 and $\tau = 1$
 3. EXPLORE(s, visited, p, S, F, τ)
- Time complexity $O(n + m)$, and similarly to undirected case, t reachable iff visited[t] = 1.
Directed Cuts

- Set of all visited vertices forms a “directed cut”
 - no outgoing edges
 - possibly incoming edges
Directed Graphs
- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) & Topological Sort
- Strongly Connected Components

Acknowledgements
DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges \(\{u, p[u]\} \) (or \(\{p[u], u\} \) if we keep directions).
DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges \(\{u, p[u]\} \) (or \((p[u], u) \) if we keep directions).

- In *undirected* graph case, we have proved all non-tree edges are *back edges* (last lecture).
DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges \(\{u, p[u]\} \) (or \((p[u], u) \) if we keep directions).
- In **undirected** graph case, we have proved all non-tree edges are *back edges* (last lecture)
- However, in **directed** graph case, we can have “**cross edges**” and “**forward edges**” (we cannot choose orientation now)
DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges \(\{u, p[u]\} \) (or \((p[u], u) \) if we keep directions).

- In **undirected** graph case, we have proved all non-tree edges are **back edges** (last lecture).

- However, in **directed** graph case, we can have “**cross edges**” and “**forward edges**” (we cannot choose orientation now).

- Still plenty of structure left:

 \(Parenthesis \ lemma \) still holds!
BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges \{u, p[u]\} (or \(p[u], u\)) if we keep directions.)
BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges \{u, p[u]\} (or \(p[u], u\)) if we keep directions.
- In *undirected* graph case, we have proved all non-tree edges are between *consecutive layers* (last lecture).
BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges \(\{u, p[u]\}\) (or \((p[u], u)\) if we keep directions).
- In **undirected** graph case, we have proved all non-tree edges are between *consecutive layers* (last lecture).
- However, in **directed** graph case, we can have non-tree edges between *arbitrary layers* ("backward edges")
BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges \{u, p[u]\} (or \(p[u], u\)) if we keep directions.
- In **undirected** graph case, we have proved all non-tree edges are between *consecutive layers* (last lecture).
- However, in **directed** graph case, we can have non-tree edges between *arbitrary layers* ("backward edges")
- Still, plenty of structure left

 Shortest paths from source.
Directed Graphs

- Reachability
- BFS/DFS trees

Directed Acyclic Graphs (DAGs) & Topological Sort
- Strongly Connected Components

Acknowledgements
Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles
Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles
- Very useful in modelling dependency relations
 - course pre-requisites
 - software installation
 - sequence of algebraic operations
Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles
- Very useful in modelling dependency relations
 - course pre-requisites
 - software installation
 - sequence of algebraic operations
- Very useful to find ordering of vertices so that all edges “go forward”

 Topological Ordering
Proposition

A directed graph is acyclic \iff there is a topological ordering.

Proof:
- If we prove that any DAG has a vertex u with $\text{deg}^{\text{in}}(u) = 0$, then we can construct a topological order by putting u in first position, then iterating over the graph $G \setminus \{u\}$.
- Proof of indegree zero vertex:
 - Suppose (for sake of contradiction) that every vertex u has $\text{deg}^{\text{in}}(u) \geq 1$.
 - Starting from vertex $t := u_0$, go to an in-neighbour u_1, and then to an in-neighbour u_2 and so on. (possible since $\text{deg}^{\text{in}}(u_i) > 0$)
 - Since the graph is finite, at some point must repeat a vertex \Rightarrow found a cycle. (contradiction)
- Can use above procedure to topologically sort a DAG (exercise)
Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇐) given topological ordering, no edge goes backwards, therefore no cycles
Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

- (⇒) if we prove that any DAG has a vertex \(u \) with \(\text{deg}_{in}(u) = 0 \), then can construct topological order by putting \(u \) in first position, then iterating over graph \(G \setminus \{u\} \)

Proof of indegree zero vertex:
Suppose (for sake of contradiction) that every vertex \(u \) has \(\text{deg}_{in}(u) \geq 1 \).
Starting from vertex \(t := u_0 \), go to an in-neighbour \(u_1 \), and then to an in-neighbour \(u_2 \) and so on. (possible since \(\text{deg}_{in}(u_i) > 0 \)) Since graph is finite, at some point must repeat a vertex ⇒ found a cycle. (contradiction)
Can use above procedure to topologically sort a DAG (exercise)
Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with $\text{deg}_{in}(u) = 0$, then can construct topological order by putting u in first position, then iterating over graph $G \setminus \{u\}$

Proof of indegree zero vertex:

- Suppose (for sake of contradiction) that every vertex u has $\text{deg}_{in}(u) \geq 1$.
- Starting from vertex $t =: u_0$, go to an in-neighbour u_1, and then to an in-neighbour u_2 and so on. (possible since $\text{deg}_{in}(u_i) > 0$)
- Since graph is finite, at some point must repeat a vertex ⇒ found a cycle. (contradiction)
Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

⇒ if we prove that any DAG has a vertex u with $\deg_{in}(u) = 0$, then can construct topological order by putting u in first position, then iterating over graph $G \setminus \{u\}$

Proof of indegree zero vertex:

- Suppose (for sake of contradiction) that every vertex u has $\deg_{in}(u) \geq 1$.
- Starting from vertex $t =: u_0$, go to an in-neighbour u_1, and then to an in-neighbour u_2 and so on. (possible since $\deg_{in}(u_i) > 0$)
- Since graph is finite, at some point must repeat a vertex ⇒ found a cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)
Constructing a Topological Ordering

Algorithm:

1. Run DFS on the whole graph
2. Output the ordering with decreasing finishing time
3. Check if this is a topological ordering. If not, return **not acyclic**.

Why does this work? (Parenthesis lemma)

We have 2 cases:

Correctness:
1. By lemma, if \(G \) is a DAG, all edges go forward in this ordering.
2. If \(G \) has a cycle, then there is no topological order by proposition.

Running time: \(O(n + m) \) (can obtain sorted list within algorithm).
Constructing a Topological Ordering

Algorithm:
1. Run DFS on the whole graph
2. Output the ordering with decreasing finishing time
3. Check if this is a topological ordering. If not, return **not acyclic**.

Why does this work? (parenthesis lemma)
Constructing a Topological Ordering

- **Algorithm:**
 1. Run DFS on the whole graph
 2. Output the ordering with decreasing finishing time
 3. Check if this is a topological ordering. If not, return *not acyclic*.

- Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any \((u, v) \in E, F[v] < F[u]\) for any DFS.
Constructing a Topological Ordering

- **Algorithm:**
 1. Run DFS on the whole graph
 2. Output the ordering with decreasing finishing time
 3. Check if this is a topological ordering. If not, return **not acyclic**.

- Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any \((u, v) \in E\), \(F[v] < F[u]\) for any DFS.

- We have 2 cases:
 - **Case 1:** \(S[v] < S[u]\).
 - Since graph is a DAG (no cycles) \(u\) not reachable from \(v\).
 - Hence \(u\) not descendant of \(v\). By parenthesis property, must have

\[
[S[v], F[v]] \cap [S[u], F[u]] = \emptyset \Rightarrow F[v] < F[u]
\]

Correctness:

1. By lemma
 - \(G\) is a DAG \(\Rightarrow\) all edges go forward in this ordering
2. \(G\) has a cycle, then there is no topological order by proposition

Running time:

\(O(n + m)\) (can obtain sorted list within algorithm)
Constructing a Topological Ordering

- **Algorithm:**
 1. Run DFS on the whole graph
 2. Output the ordering with decreasing finishing time
 3. Check if this is a topological ordering. If not, return **not acyclic**.

- Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any \((u, v) \in E\), \(F[v] < F[u]\) for any DFS.

- We have 2 cases:
 - Case 2: \(S[v] > S[u]\).
 - Since \(\text{visited}[v] = 0\) when we start \(u\) and \((u, v) \in E\), \(v\) will be a descendant of \(u\) in DFS tree.
 - Parenthesis lemma implies \([S[v], F[v]] \subset [S[u], F[u]]\)
Constructing a Topological Ordering

- **Algorithm:**
 1. Run DFS on the whole graph
 2. Output the ordering with decreasing finishing time
 3. Check if this is a topological ordering. If not, return **not acyclic**.

- **Why does this work?** (parenthesis lemma)

Lemma

If G is a DAG, then for any $(u, v) \in E$, $F[v] < F[u]$ for any DFS.

- **Correctness:**
 1. By lemma G is a DAG \Rightarrow all edges go forward in this ordering
 2. G has a cycle, then there is no topological order by proposition
Constructing a Topological Ordering

- Algorithm:
 1. Run DFS on the whole graph
 2. Output the ordering with decreasing finishing time
 3. Check if this is a topological ordering. If not, return not acyclic.

- Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any $(u, v) \in E$, $F[v] < F[u]$ for any DFS.

- Correctness:
 1. By lemma G is a DAG \implies all edges go forward in this ordering
 2. G has a cycle, then there is no topological order by proposition

- Running time: $O(n + m)$ (can obtain sorted list within algorithm)
Directed Graphs

- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) & Topological Sort
- Strongly Connected Components

Acknowledgements
Strongly Connected Components (SCCs)

- **Input**: directed graph $G(V, E)$
- **Output**: Strongly connected components of G
Strongly Connected Components (SCCs)

- **Input:** directed graph $G(V, E)$
- **Output:** Strongly connected components of G
- **Observation 1:** SCCs are vertex disjoint

Exercise: Prove this
Strongly Connected Components (SCCs)

- **Input:** directed graph \(G(V, E) \)
- **Output:** Strongly connected components of \(G \)
- **Observation 1:** SCCs are vertex disjoint

Exercise: Prove this

- **Observation 2:** general directed graph is a DAG on its SCCs!
Strongly Connected Components (SCCs)

- **Input:** directed graph $G(V, E)$
- **Output:** Strongly connected components of G
- **Observation 1:** SCCs are vertex disjoint

Exercise: Prove this

- **Observation 2:** general directed graph is a DAG on its SCCs!
- Can we find a “topological sorting” of the SCCs? Need to find one component...
Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

Can we find such a component?

Observation 3: Note that node with largest finishing time will be in a source component!
Strongly Connected Components

- **Idea 1:** If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

 Can we find such a component?

- **Attempt 1:** “topological sort” the components.
 1. If components are a DAG, then must have a sink.

Strongly Connected Components

- **Idea 1**: If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

 Can we find such a component?

- **Attempt 1**: “topological sort” the components.
 1. If components are a DAG, then must have a sink.
 2. From DAG discussion, node with earliest finish time will be a sink.
Strongly Connected Components

- **Idea 1**: If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

 Can we find such a component?

- **Attempt 1**: “topological sort” the components.
 1. If components are a DAG, then must have a sink.
 2. From DAG discussion, node with earliest finish time will be a sink.
 3. Run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
Strongly Connected Components

- **Idea 1:** If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

 Can we find such a component?

- **Attempt 1:** “topological sort” the components.
 1. If components are a DAG, then must have a sink.
 2. From DAG discussion, node with earliest finish time will be a sink.
 3. run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
 4. apply idea 1 to s, and obtain its SCC
Strongly Connected Components

- **Idea 1:** If we started a DFS/BFS in a “sink component” Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \setminus \Gamma$.

 Can we find such a component?

- **Attempt 1:** “topological sort” the components.
 1. If components are a DAG, then must have a sink.
 2. From DAG discussion, node with earliest finish time will be a sink.
 3. run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
 4. apply idea 1 to s, and obtain its SCC

Doesn’t work: node of earliest finishing time need not be in sink component.
Strongly Connected Components

- **Idea 1:** If we started a DFS/BFS in a “sink component” \(\Gamma \) (with no outgoing edges), then we will certainly find only \(\Gamma \) and then we can recurse on \(G \setminus \Gamma \).

 Can we find such a component?

- **Attempt 1:** “topological sort” the components.
 1. If components are a DAG, then must have a sink.
 2. From DAG discussion, node with earliest finish time will be a sink.
 3. Run DFS and obtain ordering in increasing finishing time, let \(s \) be element with earliest finish time
 4. Apply idea 1 to \(s \), and obtain its SCC

- **Observation 3:** note that node with largest finishing time will be in a *source component*!
Strongly Connected Components

Lemma

If Γ and Γ' are two SCCs and we have edges from Γ to Γ', then largest finish time of Γ is larger than largest finish time of Γ'.

Proof:

Case 1: first visited vertex $u \in \Gamma \sqcup \Gamma'$ is in Γ

Since vertices in $\Gamma \sqcup \Gamma'$ are reachable from u, all vertices in $\Gamma \sqcup \Gamma'$ will be finished before u, so largest finishing time will be of u.

Case 2: first visited vertex $u \in \Gamma \sqcup \Gamma'$ is in Γ'

Since vertices from Γ are unreachable from Γ', DFS needs to finish exploring Γ' before starting any vertex in Γ.
Lemma

If \(\Gamma \) and \(\Gamma' \) are two SCCs and we have edges from \(\Gamma \) to \(\Gamma' \), then largest finish time of \(\Gamma \) is larger than largest finish time of \(\Gamma' \).

Proof: two cases
Strongly Connected Components

Lemma

If Γ and Γ' are two SCCs and we have edges from Γ to Γ', then largest finish time of Γ is larger than largest finish time of Γ'.

Proof: two cases

- Case 1: first visited vertex $u \in \Gamma \sqcup \Gamma'$ is in Γ
 - Since vertices in $\Gamma \sqcup \Gamma'$ are reachable from u, all vertices in $\Gamma \sqcup \Gamma'$ will be finished before u, so largest finishing time will be of u
Strongly Connected Components

Lemma

If Γ and Γ' are two SCCs and we have edges from Γ to Γ', then largest finish time of Γ is larger than largest finish time of Γ'.

Proof: two cases

Case 1: first visited vertex $u \in \Gamma \sqcup \Gamma'$ is in Γ

- Since vertices in $\Gamma \sqcup \Gamma'$ are reachable from u, all vertices in $\Gamma \sqcup \Gamma'$ will be finished before u, so largest finishing time will be of u

Case 2: first visited vertex $u \in \Gamma \sqcup \Gamma'$ is in Γ'

- Since vertices from Γ unreachable from Γ', DFS needs to finish exploring Γ' before starting any vertex in Γ.
Strongly Connected Components

- We're looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and vice-versa)!

Let G^R be the graph obtained from G by reverting all edges. G and G^R have the same SCCs!

Can follow the ordering of the finishing times of DFS applied to G^R to get our sink components in G! (or vice-versa!)
Strongly Connected Components

- We're looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!
Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!
- Let G^R be the graph obtained from G by reverting all edges
 G and G^R have *same SCCs*!!

![Image: Everyone gets an SCC!](image.png)
Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!
- Let G^R be the graph obtained from G by reverting all edges

 G and G^R have *same SCCs*!!

- Can follow the ordering of the finishing times of DFS applied to G^R
 to get our sink components in G! (or vice-versa!)
Strongly Connected Components - Algorithm

- **Input:** directed graph \(G(V, E) \)
- **Output:** Strongly connected components of \(G \)
- **Algorithm:**
 1. Run DFS on \(G \) using arbitrary ordering of vertices
 2. Order vertices by decreasing order of finishing times, label vertices by \(u_1, \ldots, u_n \) with \(F[u_i] > F[u_{i+1}] \)
 3. Reverse \(G \) to obtain \(G^R \)
 4. Follow ordering in Step 2 to explore \(G^R \) and cut out one SCC at a time
 - Let \(\gamma = 1 \) (counts \# SCCs)
 - For \(1 \leq i \leq n \) do:
 - If \(\text{visited}[u_i] = 0 \), then: \(\text{DFS}(G^R, u_i) \) and mark all vertices reachable from \(u_i \) in \(G^R \) to be in component \(\Gamma_{\gamma} \). Then set \(\gamma \leftarrow \gamma + 1 \)
Acknowledgement

- Based on Prof. Lau’s lecture 07
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L07.pdf
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley