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Spanning trees
Input and output:
• G = (V, E) is a weighted, connected undirected graph
• edges have weights w(ei)
• a spanning tree is a tree with edges from E that covers all vertices
• examples: BFS tree, DFS tree

Remark: will assume w(ei) distinct, using W (ei) = [w(ei), i] to break ties if needed
Goal:
• a spanning tree with minimal weight
• notation: w(T ) =

∑
e edge in T w(e)

• all weights fit in a word, as usual

Exercise

what about maximal weight spanning trees?
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Kruskal’s algorithm
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Kruskal’s algorithm

GreedyMST(G)
1. F ← [ ]
2. sort edges by non-decreasing weight
3. for k = 1, . . . , m do
4. if ek does not create a cycle in (V, F ) then
5. append ek to F
6. return A = (V, F )
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Properties of the output

Claim

The output A = (V, F ) is a spanning tree

Proof:
• of course, A has no cycle: it is a forest

• suppose A is not connected. Then, there exists an edge e not in F , such that
(V, F ∪ {e}) still has no cycle (join two connected components)
• when we checked e, we did not include it
• that’s because that it created a cycle with some edges already in F : impossible.
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The cut property

Definition

cut: a partition of the vertices into sets S and V − S
cutset: the edges between S and V − S

Claim

For any cut, the minimal weight edge in the cutset is in any minimum spanning tree.
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Proof
For any cut, the minimal weight edge e in the cutset is in any minimum spanning tree.
• let T be a minimum spanning tree that does not contain e
• adding e to T creates a cycle C, and there must be an edge e′ ̸= e in C connecting S

and V − S

consider T ′ = T − {e′} ∪ {e}
• w(T ′) < w(T )
• but T ′ is still a spanning tree
• n− 1 edges
• connected: can replace edge e′ by C − {e′} to connect vertices

• contradiction
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Kruskal is optimal

Claim: every edge we add to the output is in every minimal spanning tree

Proof: consider A = (V, F ) the forest just before inserting e = {v, w}, let S be the vertices
in the tree containing v

fact 1: w is in V − S (otherwise, cycle)
fact 2: the other edges in the cutset have not been considered yet

(they do not create cycles, so they would have been put in F )

so e is has minimal weight in the cutset, and it is in every minimal spanning tree

Remark 1: this proves that the minimum spanning tree is unique

Remark 2: proof by exchange argument doable as well
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Merging connected sets of vertices
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Data structures

Operations on disjoint sets of vertices:
• Find: identify which set contains a given vertex
• Union: replace two sets by their union

GreedyMST UnionFind(G)
1. T ← [ ]
2. S ← {{v1}, . . . , {vn}}
3. sort edges by non-decreasing weight
4. for k = 1, . . . , m do
5. if find(S, ek.1) ̸= find(S, ek.2) then
6. union(S, find(S, ek.1), find(S, ek.2))
7. append ek to T
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An OK solution
a data structure for union: an array U of linked lists

1 2 3 4 5

union v1(U, s, t)
1. while U [s] not NULL do
2. U [t]← new list(U [s].value, U [t])
3. U [s]← U [s].next
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An OK solution
for find, use an array of indices, X[i] = index of the set that contains i (find returns X[i])

1 2 3 4 5

X = [1, 2, 3, 4, 5]
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An OK solution
for find, use an array of indices, X[i] = index of the set that contains i (find returns X[i])
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An OK solution
for find, use an array of indices, X[i] = index of the set that contains i (find returns X[i])

2
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union v2(X, U, s, t)
1. while U [s] not NULL do
2. U [t]← new list(U [s].value, U [t])
3. X[U [s].value]← t
4. U [s]← U [s].next
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Analysis

Worst case:
• Find is O(1)
• Union traverses one of the linked lists and updates corresponding entries of X.

Worst case Θ(n)

Kruskal’s algorithm:
• sorting edges O(m log(m))
• O(m) Find
• O(n) Union

Worst case O(m log(m) + n2)
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A simple heuristics for Union

Modified Union
• each list in U keeps track of its size
• merge the smaller list into the larger list

Key observation: worst case for one union still Θ(n), but the amortized cost is better.
• for any vertex v, the size of the set containing v at least doubles when we update X[v]
• so X[v] updated at most log(n) times
• so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total
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Prim’s algorithm
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The idea

Goal
• G is an undirected graph
• w : E → R a weight function
• as before, want a minimum weight spanning tree

The idea:
• start from an arbitrary source
• grow a tree (connected, no cycle) edge-by-edge
• new edges chosen in a greedy manner
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Growing a tree
we grow A = (S, F ) by adding the minimal weight edge S ↔ (V − S)
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