CS 341: Algorithms

Lecture 13: Minimum spanning trees

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Spanning trees

Input and output:

- G = (V, E) is a weighted, connected undirected graph
- edges have weights $w(e_i)$
- a spanning tree is a tree with edges from E that covers all vertices
- examples: BFS tree, DFS tree

Remark: will assume $w(e_i)$ distinct, using $W(e_i) = [w(e_i), i]$ to break ties if needed Goal:

- a spanning tree with **minimal weight**
- notation: $w(T) = \sum_{e \text{ edge in } T} w(e)$
- all weights fit in a word, as usual

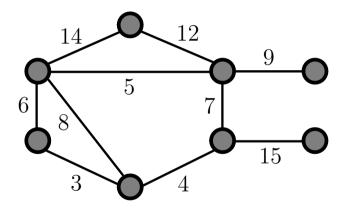
Exercise

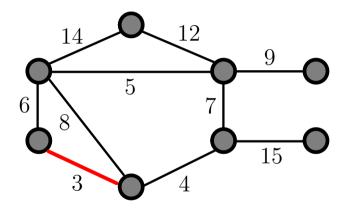
what about maximal weight spanning trees?

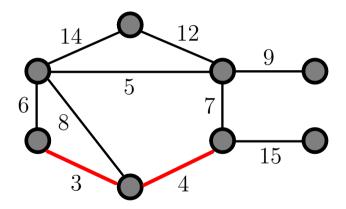
Kruskal's algorithm

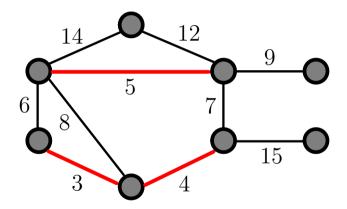
Kruskal's algorithm

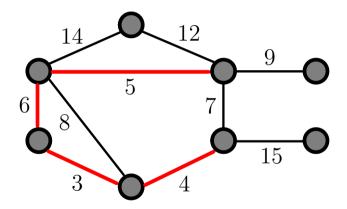
GreedyMST(G)1. $F \leftarrow []$ 2.sort edges by non-decreasing weight3.for $k = 1, \ldots, m$ do4.if e_k does not create a cycle in (V, F) then5.append e_k to F6.return A = (V, F)

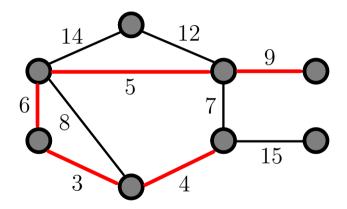


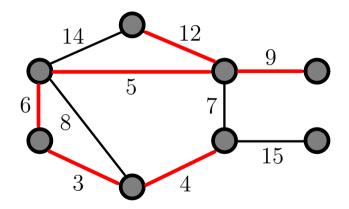


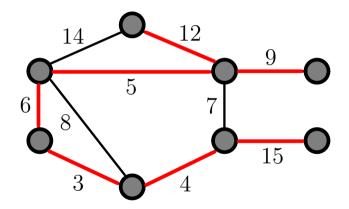












Properties of the output

Claim

The output A = (V, F) is a spanning tree

Proof:

- of course, A has no cycle: it is a **forest**
- suppose A is **not connected**. Then, there exists an edge e not in F, such that $(V, F \cup \{e\})$ still has no cycle (join two connected components)
- when we checked e, we did not include it
- that's because that it created a cycle with some edges already in F: impossible.

The cut property

Definition

cut: a partition of the vertices into sets S and V - S**cutset**: the edges between S and V - S

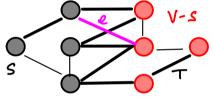
Claim

For any cut, the minimal weight edge in the cutset is in any minimum spanning tree.

Proof

For any cut, the minimal weight edge e in the cutset is in any minimum spanning tree.

- let T be a minimum spanning tree that does not contain e
- adding e to T creates a cycle C, and there must be an edge $e' \neq e$ in C connecting S and V S



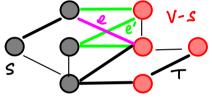
 $\text{consider } T' = T - \{e'\} \cup \{e\}$

- w(T') < w(T)
- but T' is still a spanning tree
 - n-1 edges
 - connected: can replace edge e' by $C \{e'\}$ to connect vertices
- contradiction

Proof

For any cut, the minimal weight edge e in the cutset is in any minimum spanning tree.

- let T be a minimum spanning tree that does not contain e
- adding e to T creates a cycle C, and there must be an edge $e' \neq e$ in C connecting S and V S



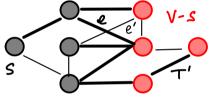
consider $T' = T - \{e'\} \cup \{e\}$

- w(T') < w(T)
- but T' is still a spanning tree
 - n-1 edges
 - connected: can replace edge e' by $C \{e'\}$ to connect vertices
- contradiction

Proof

For any cut, the minimal weight edge e in the cutset is in any minimum spanning tree.

- let T be a minimum spanning tree that does not contain e
- adding e to T creates a cycle C, and there must be an edge $e' \neq e$ in C connecting S and V S



consider $T' = T - \{e'\} \cup \{e\}$

- w(T') < w(T)
- but T' is still a spanning tree
 - n-1 edges
 - connected: can replace edge e' by $C \{e'\}$ to connect vertices
- contradiction

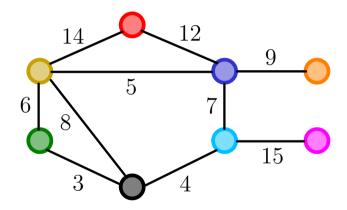
Kruskal is optimal

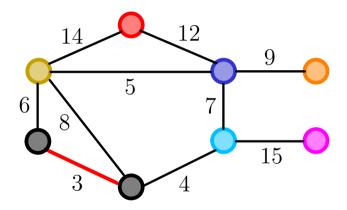
Claim: every edge we add to the output is in every minimal spanning tree

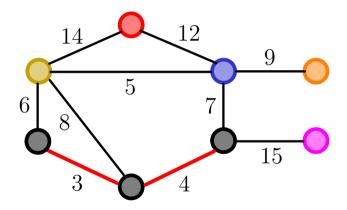
Proof: consider A = (V, F) the forest just before inserting $e = \{v, w\}$, let S be the vertices in the tree containing v

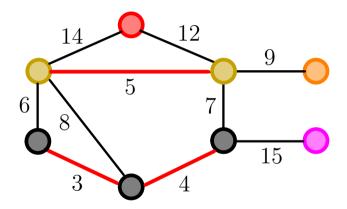
- fact 1: w is in V S (otherwise, cycle)
- fact 2: the other edges in the cutset have not been considered yet (they do not create cycles, so they would have been put in F)
- so e is has minimal weight in the cutset, and it is in every minimal spanning tree

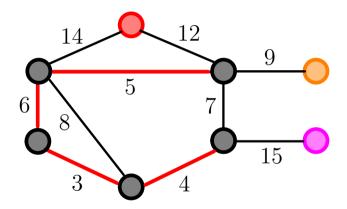
Remark 1: this proves that the minimum spanning tree is uniqueRemark 2: proof by exchange argument doable as well



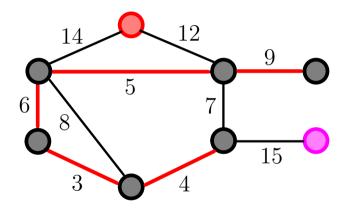


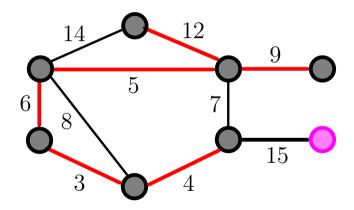


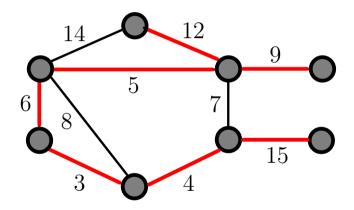




10/18







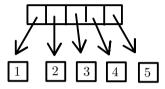
Data structures

Operations on **disjoint sets of vertices**:

- Find: identify which set contains a given vertex
- Union: replace two sets by their union

```
 \begin{array}{ll} \textbf{GreedyMST\_UnionFind}(G) \\ 1. & T \leftarrow [ \ ] \\ 2. & S \leftarrow \{\{v_1\}, \dots, \{v_n\}\} \\ 3. & \text{sort edges by non-decreasing weight} \\ 4. & \textbf{for } k = 1, \dots, m \textbf{ do} \\ 5. & \textbf{if find}(S, e_k.1) \neq \textbf{find}(S, e_k.2) \textbf{ then} \\ 6. & \textbf{union}(S, \textbf{find}(S, e_k.1), \textbf{find}(S, e_k.2)) \\ 7. & \text{append } e_k \textbf{ to } T \end{array}
```

a data structure for union: an array U of linked lists



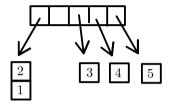
```
union_v1(U, s, t)

1. while U[s] not NULL do

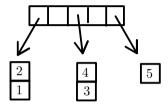
2. U[t] \leftarrow \text{new list}(U[s].\text{value}, U[t])

3. U[s] \leftarrow U[s].\text{next}
```

a data structure for union: an array U of linked lists



a data structure for union: an array U of linked lists



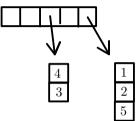
```
union_v1(U, s, t)

1. while U[s] not NULL do

2. U[t] \leftarrow new list(U[s].value, U[t])

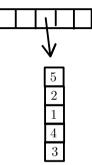
3. U[s] \leftarrow U[s].next
```

a data structure for union: an array U of linked lists

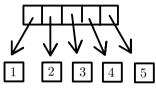


union_v1(U, s, t) 1. while U[s] not NULL do 2. $U[t] \leftarrow$ new list(U[s].value, U[t]) 3. $U[s] \leftarrow U[s]$.next

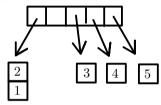
a data structure for union: an array U of linked lists



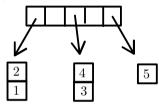
union_v1(U, s, t) 1. while U[s] not NULL do 2. $U[t] \leftarrow$ new list(U[s].value, U[t]) 3. $U[s] \leftarrow U[s]$.next



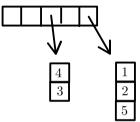
$$X = [1, 2, 3, 4, 5]$$



$$X = [1, 1, 3, 4, 5]$$



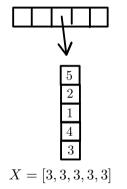
$$X = [1, 1, 3, 3, 5]$$



$$X = [5, 5, 3, 3, 5]$$

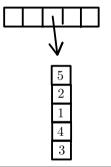
An OK solution

for find, use an array of indices, X[i] = index of the set that contains i (find returns X[i])



An OK solution

for find, use an **array of indices**, X[i] = index of the set that contains i (find returns X[i])



Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists and updates corresponding entries of X.
 Worst case Θ(n)

Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists and updates corresponding entries of X. Worst case $\Theta(n)$

Kruskal's algorithm:

- sorting edges $O(m \log(m))$
- O(m) Find
- O(n) Union

Worst case $O(m \log(m) + n^2)$

A simple heuristics for Union

Modified Union

- each list in U keeps track of its size
- merge the smaller list into the larger list

A simple heuristics for Union

Modified Union

- each list in U keeps track of its size
- merge the smaller list into the larger list

Key observation: worst case for one union still $\Theta(n)$, but the amortized cost is better.

- for any vertex v, the size of the set containing v at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the total cost of union per vertex is $O(\log(n))$

A simple heuristics for Union

Modified Union

- each list in U keeps track of its size
- merge the smaller list into the larger list

Key observation: worst case for one union still $\Theta(n)$, but the amortized cost is better.

- for any vertex v, the size of the set containing v at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the total cost of union per vertex is $O(\log(n))$

Conclusion: $O(n \log(n))$ for all unions and $O(m \log(m))$ total

Prim's algorithm

The idea

Goal

- G is an undirected graph
- $w: E \to R$ a weight function
- $\bullet\,$ as before, want a minimum weight spanning tree

The idea:

- $\bullet~{\rm start}~{\rm from}~{\rm an}$ arbitrary source
- grow a tree (connected, no cycle) edge-by-edge
- new edges chosen in a greedy manner

