Lecture 14: Single-Source Shortest Paths

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 31, 2023
Overview

- **Dijkstra’s Algorithm**
 - Single-Source Shortest Paths
 - Weighted Shortest Paths as a BFS
 - Dijkstra’s Algorithm

- **Acknowledgements**
Input: *Weighted directed* graph $G(V, E, w)$, where $w : E \to \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

Output: a shortest path from s to t for any $t \in V$
Single-Source Shortest Paths

- **Input:** *Weighted directed* graph $G(V, E, w)$, where $w : E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

 Adjacency list.

- **Output:** a shortest path from s to t for any $t \in V$

 Think of graph as the network of roads in a province

 Edge weights account for how long it takes to drive through that edge (i.e. traffic)
Single-Source Shortest Paths

- **Input:** *Weighted directed* graph $G(V, E, w)$, where $w : E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$
 - Adjacency list.
- **Output:** a shortest path from s to t for any $t \in V$
- How should we output all these paths?
 - Just as in unweighted case (BFS), could output a “directed tree” where we can read off the shortest paths.
- *Succinct* representation of the output.
Single-Source Shortest Paths

- **Input:** Weighted directed graph \(G(V, E, w) \), where \(w : E \to \mathbb{R}_{>0} \), vertex \(s \in V \)

 Adjacency list.

- **Output:** a shortest path from \(s \) to \(t \) for any \(t \in V \)

- How should we output all these paths?

 Just as in unweighted case (BFS), could output a “directed tree” where we can read off the shortest paths.

 Succinct representation of the output.

- Why can’t I just use BFS?

 Need to account for the *weights* of edges - shortest path *not necessarily* given by *least number* of edges.
Single-Source Shortest Paths

- **Input:** *Weighted directed* graph $G(V, E, w)$, where $w : E \to \mathbb{R}_{>0}$, vertex $s \in V$

 Adjacency list.

- **Output:** a shortest path from s to t for any $t \in V$

 How should we output all these paths?

 Just as in unweighted case (BFS), could output a “directed tree” where we can read off the shortest paths.

 Succinct representation of the output.

- Why can’t I just use BFS?
 Need to account for the *weights* of edges - shortest path *not necessarily* given by *least number* of edges.

- Can we modify our graph so that it becomes unweighted?
 OUI et NON! Let’s look at that now...
Shortest Paths as BFS

- Can imagine our graph as a set of water pipes
 Length of pipes given by edge weights.
 Assume \(w : E \rightarrow \mathbb{N} \).
Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

 Length of pipes given by edge weights.

 Assume $w : E \rightarrow \mathbb{N}$.

- When we pump water through s, spreads at uniform speed
Shortest Paths as BFS

- Can imagine our graph as a set of water pipes
 - Length of pipes given by edge weights.
 - Assume \(w : E \rightarrow \mathbb{N} \).
- When we pump water through \(s \), spreads at uniform speed
- At each time \(\tau \), if water reaches another vertex \(t \), we record the distance \(s \rightarrow t \) to be \(\tau \)
Shortest Paths as BFS

- Can imagine our graph as a set of water pipes
 Length of pipes given by edge weights.
 Assume $w : E \to \mathbb{N}$.
- When we pump water through s, spreads at uniform speed
- At each time τ, if water reaches another vertex t, we record the distance $s \to t$ to be τ
- Making above intuition algorithmic:
 - Make unweighted graph $H(U, F)$ from G as follows
 1. For each $e := (u, v) \in E$, create path of length $w(e)$ from $u \to v$ in H
 Add new vertices and edges appropriately.
 2. Run BFS on H, starting from s
 3. Return “compressed tree” only having vertices from V
Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

 Length of pipes given by edge weights.

 Assume \(w : E \to \mathbb{N} \).

- When we pump water through \(s \), spreads at uniform speed

- At each time \(\tau \), if water reaches another vertex \(t \), we record the distance \(s \to t \) to be \(\tau \)

- Making above intuition algorithmic:

 Make unweighted graph \(H(U, F) \) from \(G \) as follows

 1. For each \(e := (u, v) \in E \), create path of length \(w(e) \) from \(u \to v \) in \(H \)

 Add new vertices and edges appropriately.

 2. Run BFS on \(H \), starting from \(s \)

 3. Return “compressed tree” only having vertices from \(V \)

- **Problem**: running time of above algorithm will be linear in \(H \), but

 \[O(|U| + |F|) = O(n + \sum_{e \in E} w(e)) \]
Dijkstra’s Algorithm

- **Idea:** simulate physical process above directly in G

```plaintext
Algorithm

1. $T = \emptyset$, $R = \{s\}$, $D[v] = \infty$ for $v \neq s$, $D[s] = 0$, $Q = V$

2. While $Q \neq \emptyset$:
   - Let $u \in V \setminus R$ be closest vertex to $R$,
     $e = (v, u)$ be edge such that $D[v] + w(e)$ minimizes distance $s \to u$
   - Extract $u$ from $Q$
   - $T \leftarrow T + e$, $R \leftarrow R \cup \{u\}$

3. Return $T$

Correctness: follows from our BFS process

Runtime: need to find closest vertex & update distances fast.

How can we do that?
Via priority-queue (min heap).
Using such a priority-queue, runtime is given by $O((n + m) \log n)$.
Dijkstra’s Algorithm

**Idea:** simulate physical process above directly in $G$

**Algorithm**

1. $T = \emptyset$, $R = \{s\}$, $D[u] = \infty$ for $u \neq s$, $D[s] = 0$, $Q = V$
2. While $Q \neq \emptyset$:
   - let $u \in V \setminus R$ be closest vertex to $R$, $e = (v, u)$ be edge such that $D[v] + w(e)$ minimizes distance $s \rightarrow u$
   - extract $u$ from $Q$
   - $T \leftarrow T + e$, $R \leftarrow R \cup \{u\}$
3. return $T$

**Correctness:** follows from our BFS process

**Runtime:** need to find closest vertex & update distances fast. How can we do that?

Via priority-queue (min heap). Using such a priority-queue, runtime is given by $O((n + m) \log n)$. 
Dijkstra’s Algorithm

- **Idea:** simulate physical process above directly in $G$

  **Algorithm**
  1. $T = \emptyset$, $R = \{s\}$, $D[u] = \infty$ for $u \neq s$, $D[s] = 0$, $Q = V$
  2. While $Q \neq \emptyset$:
     - let $u \in V \setminus R$ be closest vertex to $R$, $e = (v, u)$ be edge such that $D[v] + w(e)$ minimizes distance $s \to u$
     - extract $u$ from $Q$
     - $T \leftarrow T + e$, $R \leftarrow R \cup \{u\}$
  3. return $T$

- **Correctness:** follows from our BFS process

- **Runtime:** need to find closest vertex & update distances fast. How can we do that? Via priority-queue (min heap).
  Using such a priority-queue, runtime is given by $O((n+m) \log n)$. 


Dijkstra’s Algorithm

- **Idea:** simulate physical process above directly in $G$

- **Algorithm**
  1. $T = \emptyset$, $R = \{s\}$, $D[u] = \infty$ for $u \neq s$, $D[s] = 0$, $Q = V$
  2. While $Q \neq \emptyset$:
     - let $u \in V \setminus R$ be closest vertex to $R$, $e = (v, u)$ be edge such that $D[v] + w(e)$ minimizes distance $s \to u$
     - extract $u$ from $Q$
     - $T \leftarrow T + e$, $R \leftarrow R \cup \{u\}$
  3. return $T$

- **Correctness:** follows from our BFS process

- **Runtime:** need to find closest vertex & update distances fast.
  How can we do that?
  Via priority-queue (min heap).
  Using such a priority-queue, runtime is given by $O((n + m) \log n)$. 
Dijkstra - Full Implementation

● Full Algorithm

1 Initialization:
   - \( T = \emptyset \), (edges of our shortest-path)
   - \( R = \{s\} \), (set of “reached vertices”)
   - \( p[u] = NULL \) for all \( u \in V \) (parents)
   - \( D[u] = \infty \) for all \( u \in V \setminus \{s\} \), \( D[s] = 0 \) (distance to \( s \))
   - \( Q = V \) priority-queue (min heap w/ values given by \( D \))

2 While \( Q \neq \emptyset \):
   - \( u = \text{EXTRACT-MIN}(Q) \)
   - For \( v \in N_{out}(u) \):
     - if \( D[u] + w((u, v)) < D[v] \), then:
       - set \( D[v] = D[u] + w((u, v)) \),
       - \( p[v] = u \),
       - \( \text{DECREASE-KEY}(Q, v) \)
   - \( T \leftarrow T + (p[u], u) \), \( R \leftarrow R \cup \{u\} \)

3 return \( T \)
Runtime of Dijkstra’s Algorithm

- Each vertex is enqueued once and dequeued once
- When vertex is dequeued, check outgoing edges and update distances (if needed)
- All queue operations implemented in $O(\log n)$ time by min-heap
- **Total runtime:**

$$O \left( \left( n + \sum_{u \in V} \deg_{\text{out}}(u) \right) \log n \right) = O((n + m) \log n)$$
Correctness of Dijkstra’s Algorithm

- Similar analysis than the one we did for MST
- Proof of correctness by induction.
- **Claim:** for any \( u \in R \), \( D[u] \) is the shortest path distance from \( s \rightarrow u \)
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any \( u \in R \), \( D[u] \) is the shortest path distance from \( s \rightarrow u \)
  - **Base case:** true when \( R = \{ s \} \)
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any $u \in R$, $D[u]$ is the shortest path distance from $s \rightarrow u$
  1. **Base case:** true when $R = \{s\}$
  2. **Induction step:** assume invariant holds for $R$, and the algorithm adds $u$ to $R$. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$. 

- Need to prove that $D[u] = \min_{w \in R} D[w] + \ell((w, u))$ is the shortest path distance $s \rightarrow u$.
- By choice of $u$, we have that $D[u] \leq D[v]$ for any $v \not\in R$.
- Since $D[u]$ is the distance of some $s \rightarrow u$ path, we know it is at least the shortest path distance.
- For the converse, consider any $s \rightarrow u$ path $P$. Since $s \in R$ and $u \not\in R$, there is edge $(x, v) \in P$ where $x \in R$ and $v \not\in R$. ($R$ is a cut) $\Rightarrow \ell(P) \geq D[x] + \ell((x, v))$ as $D[x]$ is shortest $s \rightarrow x$ distance, since $x \in R$. 

21 / 32
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any \( u \in R \), \( D[u] \) is the shortest path distance from \( s \rightarrow u \)
  
  1. **Base case:** true when \( R = \{s\} \)
  2. **Induction step:** assume invariant holds for \( R \), and the algorithm adds \( u \) to \( R \). Want to show that \( D[u] \) is the shortest path distance \( s \rightarrow u \).
  3. Need to prove that

\[
D[u] = \min_{w \in R} D[w] + w((w, u))
\]

is the shortest path distance \( s \rightarrow u \).
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any \( u \in R \), \( D[u] \) is the shortest path distance from \( s \rightarrow u \)
  1. **Base case:** true when \( R = \{s\} \)
  2. **Induction step:** assume invariant holds for \( R \), and the algorithm adds \( u \) to \( R \). Want to show that \( D[u] \) is the shortest path distance \( s \rightarrow u \).
  3. Need to prove that

\[
D[u] = \min_{w \in R} D[w] + w((w, u))
\]

is the shortest path distance \( s \rightarrow u \).
  4. By choice of \( u \), we have that \( D[u] \leq D[v] \) for any \( v \notin R \).
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any \( u \in R \), \( D[u] \) is the shortest path distance from \( s \to u \)
  1. **Base case:** true when \( R = \{s\} \)
  2. **Induction step:** assume invariant holds for \( R \), and the algorithm adds \( u \) to \( R \). Want to show that \( D[u] \) is the shortest path distance \( s \to u \).
  3. Need to prove that

\[
D[u] = \min_{w \in R} D[w] + w((w, u))
\]

is the shortest path distance \( s \to u \).
  4. By choice of \( u \), we have that \( D[u] \leq D[v] \) for any \( v \notin R \).
  5. Since \( D[u] \) is the distance of *some* \( s \to u \) path, we know it is at least the shortest path distance.
Correctness of Dijkstra’s Algorithm

- Proof of correctness by induction.
- **Claim:** for any $u \in R$, $D[u]$ is the shortest path distance from $s \rightarrow u$
  1. **Base case:** true when $R = \{s\}$
  2. **Induction step:** assume invariant holds for $R$, and the algorithm adds $u$ to $R$. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.
  3. Need to prove that

$$D[u] = \min_{w \in R} D[w] + w((w, u))$$

is the shortest path distance $s \rightarrow u$.

4. By choice of $u$, we have that $D[u] \leq D[v]$ for any $v \notin R$.

5. Since $D[u]$ is the distance of *some* $s \rightarrow u$ path, we know it is at least the shortest path distance.

6. For the converse, consider any $s \rightarrow u$ path $P$. Since $s \in R$ and $u \notin R$, there is edge $(x, v) \in P$ where $x \in R$ and $v \notin R$. ($R$ is a cut)

$$\Rightarrow \ell(P) \geq D[x] + w((x, v))$$

as $D[x]$ is shortest $s \rightarrow x$ distance, since $x \in R$
Correctness of Dijkstra’s (continued)

We have

$$\ell(P) \geq D[x] + w((x, v))$$

**OBS:** here we used non-negative edge weights.
Correctness of Dijkstra’s (continued)

- We have

\[ \ell(P) \geq D[x] + w((x, v)) \]

**OBS:** here we used non-negative edge weights.

- But we know that

\[ D[x] + w(x, v) \geq D[v] \geq D[u] \]

as \( u \) was chosen by the algorithm.
Correctness of Dijkstra’s (continued)

- We have

\[ \ell(P) \geq D[x] + w((x, v)) \]

**OBS:** here we used non-negative edge weights.

- But we know that

\[ D[x] + w(x, v) \geq D[v] \geq D[u] \]

as \( u \) was chosen by the algorithm.

- Thus, we have

\[ \ell(P) \geq D[u] \]

Since the above holds for *any* \( s \rightarrow u \) path, \( D[u] \) is the shortest path distance.
Shortest Path Tree

- Just like we did for BFS and DFS, the set of edges \((p[u], u)\) form a (directed) tree.
Shortest Path Tree

- Just like we did for BFS and DFS, the set of edges \((p[u], u)\) form a (directed) tree.
- Since such edges (by construction) satisfy

\[
D[u] = D[p[u]] + w(p[u], u)
\]

and we just proved that \(D[u]\) is the shortest \(s \rightarrow u\) path distance, this tree stores all shortest path distances from \(s\)!
Acknowledgement

- Based on Prof. Lau’s Lecture 9
  https://cs.uwaterloo.ca/~lapchi/cs341/notes/L09.pdf
- Also based on [Kleinberg Tardos 2006, Chapter 4]
- For refresher on min heaps, see [CLRS 2009, Chapter 6.5]
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
*MIT Press*

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
*Addison Wesley*