CS 341: Algorithms

Lecture 16: Max flow

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

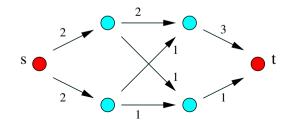
Next three lectures:

- basic results on flows and cuts
- Ford-Fulkerson algorithm for flows
- correctness via max flow = min cut
- some applications

Flows

Setup.

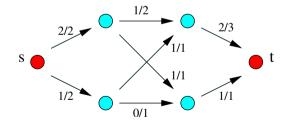
- let G be a directed graph, with no isolated vertex $(m \ge n/2)$, and let c be a capacity on the edges of G
 - for all $e,\,c(e)\geq 0$
 - by default, c(e) is an integer
- we isolate two vertices in G, which will be called the **source** s and the **sink** t. there is no edge going **to** s or **from** t.
- we want to send as much "flow" as possible (water in pipes, material on transport networks, ...) while respecting certain rules.



Flows

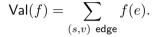
Definition: a flow is a function f of the edges that satisfies

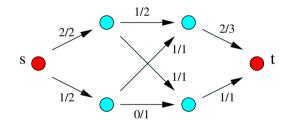
- for any edge e, we have $0 \leq f(e) \leq c(e)$
- the amount of flow that **enters** a vertex equals the amount of flow that **goes out** of it (except at s and t)



Flows

Definition: the **value** of a flow is the amount of flow that goes out of the source:





here, value is 3.

MaxFlow problem: find a flow with a maximal value.

Producing bananas

Example

We have banana factories F_1, F_2, F_3 and grocery stores S_1, S_2 .

- F_i can produce up to f_i tons of bananas,
- S_j wants s_j tons of bananas.

How to maximize production?

Producing bananas

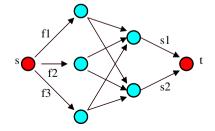
Example

We have banana factories F_1, F_2, F_3 and grocery stores S_1, S_2 .

- F_i can produce up to f_i tons of bananas,
- S_j wants s_j tons of bananas.

How to maximize production?

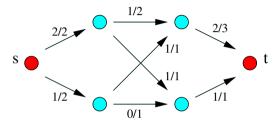
Compute the maximal flow in the following graph (the middle edges have large capacity, such as f_1, f_2, f_3).



Ford-Fulkerson's algorithm

Improving the value

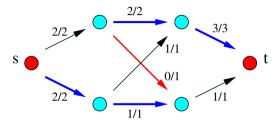
we may have to **decrease** the flow through some edges.



here, we are stuck if we only allow to increase all edges' flow.

Improving the value

we may have to **decrease** the flow through some edges.



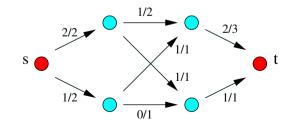
we improve the value to 4 by redirecting some flow that was going through the red edge. amounts to sending one extra flow unit all along the colored path, taking the red edge **backward**.

The residual graph

The residual graph G_f shows all the ways to increase the value of the flow.

Definition

- vertices of G_f are those of G.
- for e in E
 - if f(e) < c(e), put e in $edge(G_f)$ with capacity c(e) f(e)
 - if f(e) > 0, put reverse(e) in edge(G_f) with capacity f(e). (edges of G_f show what modifications are possible)

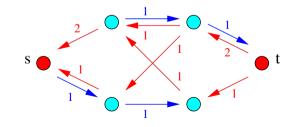


The residual graph

The residual graph G_f shows all the ways to increase the value of the flow.

Definition

- vertices of G_f are those of G.
- for e in E
 - if f(e) < c(e), put e in $edge(G_f)$ with capacity c(e) f(e)
 - if f(e) > 0, put reverse(e) in edge(G_f) with capacity f(e). (edges of G_f show what modifications are possible)



Using the residual graph

path from s to t in G_f gives a way to increase the value in G.

- blue edge of capacity c: can increase the flow by up to c on that edge in G
- red edge of capacity c: can decrease the flow by up to c on the reverse of this edge in G

improvement step:

- compute the residual graph
- find a (simple) path γ from s to t in G_f , if one exists, using BFS, DFS, or something else (can assume O(m))
- let \boldsymbol{x} be the minimal value of all capacities on γ in G_f
- update the flow on G accordingly
 - increase the blue edges by \boldsymbol{x}
 - decrease the reverse of red edges by \boldsymbol{x}

Correctness of the improvement step

Claim

after an improvement step,

- we still have a flow on G
- the value has increased by x
- if we had an integer flow (and integer capacities in G), still have an integer flow

Proof

• we still have a flow

- all flow values on the edges are ≥ 0 and do not exceed capacities (case discussion for red / blue edges)
- at any vertex v, incoming flow still equals outgoing flow

(if v is not on the path, nothing changes, else case discussion $\times 4$)

• the value increases

- the path must have a single edge containing s, and this is edge is blue
- integer flow: x is an integer

Ford and Fulkerson's algorithm

Max Flow algorithm

- initialize the flow with all values at 0
- while possible, do the improvement step

Claim

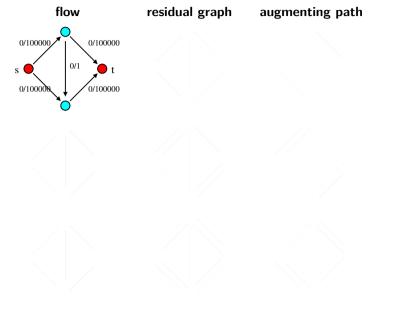
The algorithm computes a maximal flow

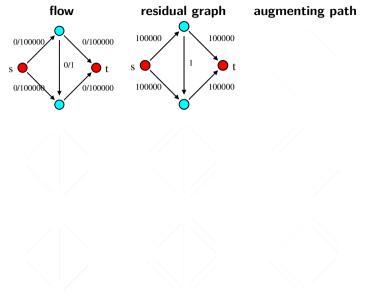
Proof: will take some work

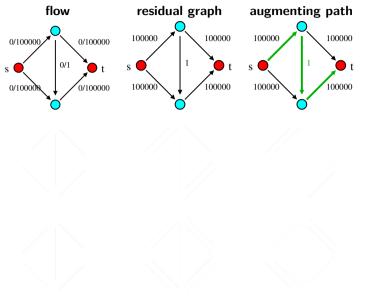
Claim

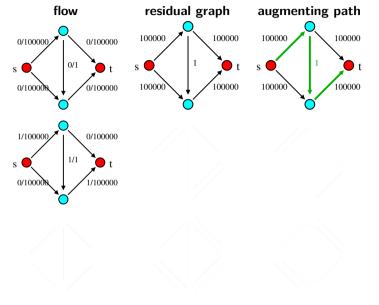
Runtime is O(mM), where M is the maximal value of the flow.

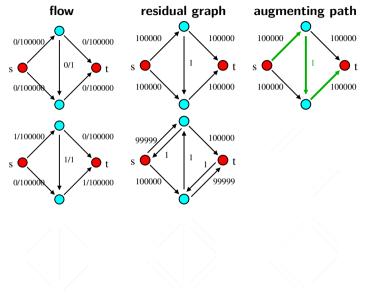
Proof: each improvement step costs O(m) and increases the value by **at least 1** (integers!), so we can do at most M improvement steps.

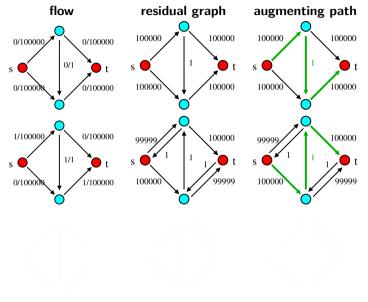


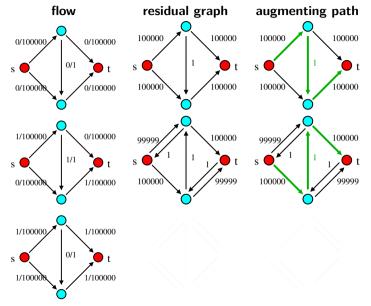




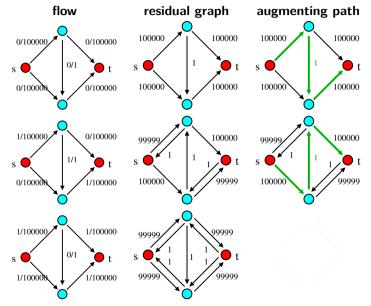




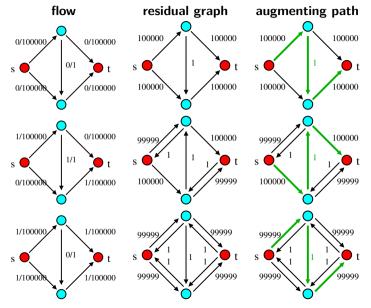




13/18



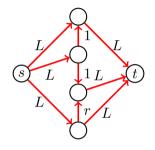
13/18



13/18

Integer capacities needed for termination

let $r = (\sqrt{5} - 1)/2 \simeq 0.618$, L a large integer and consider this graph:

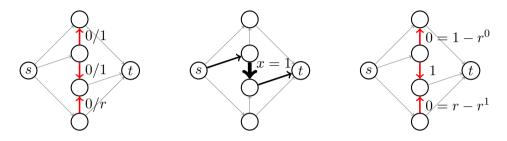


Observations

- easy to find a flow of value 2L + 1
- this is the best we can do
- but Ford-Fulkerson may loop forever

 $(\max \text{ flow} = \min \text{ cut}, \text{ next lecture})$

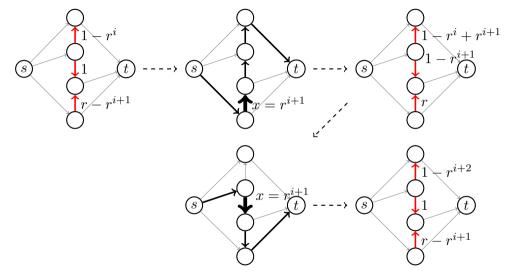
Initialization



Remarks:

- flow on edges from s and edges to t not shown:
 - large capacity,
 - never a bottleneck
- value of the flow so far: $\mathbf{1}$

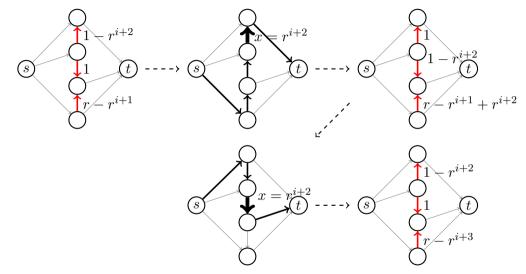
Two augmentation steps



Two augmentation steps

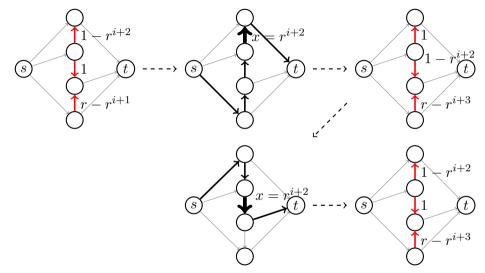


Another two augmentation steps



Flow increases by $2r^{i+2}$, and we are back to the previous step with $i \leftarrow i+2$ 17/18

Another two augmentation steps



Flow increases by $2r^{i+2}$, and we are back to the previous step with $i \leftarrow i+2$ 17/18

Conclusion

Regarding Ford-Fulkerson's algorithm

• may loop forever, with value approaching

$$1+2\sum_{i\geq 1}r^i=\sqrt{5}+2$$

• optimal flow is 2L + 1 (L large)

Computing with irrational numbers?

• computing with powers of r feasible:

$$r^i = \frac{a_i}{b_i} + \frac{c_i}{d_i}\sqrt{5}, \quad a_i, b_i, c_i, d_i \text{ integers}$$

can be added, multiplied, compared

• but assuming that a_i, b_i, c_i, d_i fit in a word is **irrealistic**, a_i, b_i are $\Theta($ golden ratio^{*i*})