CS 341: Algorithms

Lecture 16: Max flow

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals

Next three lectures:

- basic results on flows and cuts
- Ford-Fulkerson algorithm for flows
- correctness via max flow $=$ min cut
- some applications

Flows

Setup.

- let *G* be a **directed** graph, with **no isolated vertex** $(m \ge n/2)$, and let *c* be a **capacity** on the edges of *G*
	- for all $e, c(e) > 0$
	- by default, *c*(*e*) is an **integer**
- we isolate two vertices in *G*, which will be called the **source** *s* and the **sink** *t*. there is no edge going **to** *s* or **from** *t*.
- we want to send as much "flow" as possible (water in pipes, material on transport networks, . . .) while respecting certain rules.

Flows

Definition: a **flow** is a function *f* of the edges that satisfies

- for any edge *e*, we have $0 \leq f(e) \leq c(e)$
- the amount of flow that **enters** a vertex equals the amount of flow that **goes out** of it (except at *s* and *t*)

Flows

Definition: the **value** of a flow is the amount of flow that goes out of the source:

$$
\mathsf{Val}(f) = \sum_{(s,v) \text{ edge}} f(e).
$$

here, value is 3.

MaxFlow problem: find a flow with a maximal value.

Producing bananas

Example

We have banana factories F_1, F_2, F_3 and grocery stores S_1, S_2 .

- F_i can produce up to f_i tons of bananas,
- *S^j* wants *s^j* tons of bananas.

How to maximize production?

Producing bananas

Example

We have banana factories F_1, F_2, F_3 and grocery stores S_1, S_2 .

- F_i can produce up to f_i tons of bananas,
- *S^j* wants *s^j* tons of bananas.

How to maximize production?

Compute the maximal flow in the following graph (the middle edges have large capacity, such as f_1, f_2, f_3).

Ford-Fulkerson's algorithm

Improving the value

we may have to **decrease** the flow through some edges.

here, we are stuck if we only allow to increase all edges' flow.

Improving the value

we may have to **decrease** the flow through some edges.

we improve the value to 4 by redirecting some flow that was going through the red edge. amounts to sending one extra flow unit all along the colored path, taking the red edge **backward**.

The residual graph

The residual graph G_f shows all the ways to increase the value of the flow.

Definition

- vertices of *G^f* are those of *G*.
- for *e* in *E*
	- if $f(e) < c(e)$, put *e* in edge(G_f) with capacity $c(e) f(e)$
	- if $f(e) > 0$, put **reverse**(*e*) in edge(G_f) with capacity $f(e)$. (edges of G_f show what modifications are possible)

The residual graph

The residual graph G_f shows all the ways to increase the value of the flow.

Definition

- vertices of *G^f* are those of *G*.
- for *e* in *E*
	- if $f(e) < c(e)$, put *e* in edge(G_f) with capacity $c(e) f(e)$
	- if $f(e) > 0$, put **reverse**(*e*) in edge(G_f) with capacity $f(e)$. (edges of G_f show what modifications are possible)

Using the residual graph

path from *s* **to** *t* **in** G_f gives a way to increase the value in G .

- **blue edge** of capacity *c*: can **increase** the flow by up to *c* on that edge in *G*
- **red edge** of capacity *c*: can **decrease** the flow by up to *c* on the reverse of this edge in *G*

improvement step:

- compute the residual graph
- find a **(simple) path** γ from *s* to *t* in G_f , if one exists, using BFS, DFS, or something else (can assume $O(m)$)
- let *x* be the **minimal** value of all capacities on γ in G_f
- update the flow on *G* accordingly
	- increase the blue edges by *x*
	- decrease the reverse of red edges by *x*

Correctness of the improvement step

Claim

after an improvement step,

- we still have a flow on *G*
- the value has increased by *x*
- if we had an integer flow (and integer capacities in *G*), still have an integer flow

Proof

• **we still have a flow**

- all flow values on the edges are ≥ 0 and do not exceed capacities (case discussion for red / blue edges)
- at any vertex *v*, incoming flow still equals outgoing flow (if *v* is not on the path, nothing changes, else case discussion \times 4)
- **the value increases**
	- the path must have a single edge containing *s*, and this is edge is blue
- **integer flow:** x is an integer

Ford and Fulkerson's algorithm

Max Flow algorithm

- initialize the flow with all values at 0
- while possible, do the improvement step

Claim

The algorithm computes a maximal flow

Proof: will take some work

Claim

Runtime is $O(mM)$, where M is the maximal value of the flow.

Proof: each improvement step costs $O(m)$ and increases the value by **at least 1** (integers!), so we can do at most *M* improvement steps.

 $13/18$

 $13/18$

Integer capacities needed for termination

let $r = (\sqrt{5} - 1)/2 \simeq 0.618$, *L* a large integer and consider this graph:

Observations

- easy to find a flow of value $2L + 1$
-
- but Ford-Fulkerson may loop forever

• this is the best we can do (max flow = min cut, next lecture)

14 /

Initialization

Remarks:

- flow on edges from *s* and edges to *t* not shown:
	- large capacity,
	- never a bottleneck
- value of the flow so far: **1**

Two augmentation steps

Two augmentation steps

Another two augmentation steps

Flow increases by $2r^{i+2}$, and we are back to the previous step with $i \leftarrow i + 2$ 17 / 18

Another two augmentation steps

Flow increases by $2r^{i+2}$, and we are back to the previous step with $i \leftarrow i + 2$ 17 / 18

Conclusion

Regarding Ford-Fulkerson's algorithm

• may loop forever, with value approaching

$$
1+2\sum_{i\geq 1}r^i=\sqrt{5}+2
$$

• optimal flow is $2L + 1$ (*L* large)

Computing with irrational numbers?

• computing with powers of *r* **feasible**:

$$
r^{i} = \frac{a_{i}}{b_{i}} + \frac{c_{i}}{d_{i}}\sqrt{5}, \quad a_{i}, b_{i}, c_{i}, d_{i} \text{ integers}
$$

can be added, multiplied, compared

• but assuming that a_i, b_i, c_i, d_i fit in a word is **irrealistic**, a_i, b_i are $\Theta(\text{golden ratio}^i)$