CS 341: Algorithms

Lecture 17: Max flow = Min cut

Eric Schost ´

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Cuts

Cuts

Definition

- a **cut** is a partition of the vertices into sets *A* and $B = V A$, with $s \in A$ and $t \in B$.
- the **capacity** of the cut is

$$
c(A) = \sum_{e:A \to B} c(e)
$$

(does not depend on any flow, only on the graph and its capacities)

• if *f* is a flow, the **out-going** and **in-going** flows of the cut are

$$
v_{\text{out}}(f, A) = \sum_{e:A \to B} f(e), \quad v_{\text{in}}(f, A) = \sum_{e:B \to A} f(e)
$$

- *A* is in red and *B* in light blue,
- capacity is $2+2+3=7$,

- *A* is in red and *B* in light blue,
- capacity is $2+2+3=7$,
- out-going flow is $2 + 1 + 2 = 5$,
- in-going flow is $1 + 1 = 2$,
- value is 3

- *A* is in red and *B* in light blue,
- capacity is $2+3+1=6$,

- *A* is in red and *B* in light blue,
- capacity is $2+3+1=6$,
- out-going flow is $1+2+1=4$,
- in-going flow is 1,
- value is 3

Flows and cuts

Claim

For any flow *f* and any cut *A*, we have

$$
\mathsf{Val}(f) = v_{\text{out}}(f, A) - v_{\text{in}}(f, A)
$$

Remark: this shows that what comes out of *s* equals what comes into *t*.

Flows and cuts

Claim

For any flow *f* and any cut *A*, we have

$$
\mathsf{Val}(f) = v_{\text{out}}(f, A) - v_{\text{in}}(f, A)
$$

Remark: this shows that what comes out of *s* equals what comes into *t*.

Proof: induction on *A*.

- true when $A = \{s\}$, by definition.
- suppose this is true for a cut *A*, $B = V A$, we show this is true for the cut $A' = A \cup \{v\}, B' = B - \{v\}, \text{ for any vertex } v \in B \text{ (with } v \neq t).$

What we need to do:

- relate $v_{\text{out}}(f, A)$ to $v_{\text{out}}(f, A'),$
- relate $v_{\text{in}}(f, A)$ to $v_{\text{in}}(f, A')$.

$$
v_{\text{out}}(f, A) = \sum_{e:A \to B} f(e)
$$

=
$$
\sum_{e:A \to v} f(e) + \sum_{e:A \to B'} f(e)
$$

and

$$
v_{\text{out}}(f, A') = \sum_{e:A'\to B'} f(e)
$$

=
$$
\sum_{e:A\to B'} f(e) + \sum_{e:v\to B'} f(e).
$$

$$
v_{\text{out}}(f, A') = v_{\text{out}}(f, A) - \sum_{e:A \to v} f(e) + \sum_{e:v \to B'} f(e)
$$

$$
v_{\text{out}}(f, A') = v_{\text{out}}(f, A) - \sum_{e:A \to v} f(e) + \sum_{e:v \to B'} f(e)
$$

$$
v_{\text{in}}(f, A) = \sum_{e:B \to A} f(e)
$$

=
$$
\sum_{e:v \to A} f(e) + \sum_{e:B' \to A} f(e)
$$

and

$$
v_{\text{in}}(f, A') = \sum_{e:B' \to A'} f(e)
$$

=
$$
\sum_{e:B' \to A} f(e) + \sum_{e:B' \to v} f(e).
$$

$$
v_{\text{in}}(f, A') = v_{\text{in}}(f, A) - \sum_{e:v \to A} f(e) + \sum_{e:B' \to v} f(e)
$$

$$
v_{\text{in}}(f, A') = v_{\text{in}}(f, A) - \sum_{e: v \to A} f(e) + \sum_{e: B' \to v} f(e)
$$

Because *f* is a flow, we have

$$
\sum_{e:v \to A} f(e) + \sum_{e:v \to B'} f(e) = \sum_{e:B' \to v} f(e) + \sum_{e:A \to v} f(e)
$$

$$
v_{\text{out}}(f, A') = v_{\text{out}}(f, A) - \sum_{e:A \to v} f(e) + \sum_{e:v \to B'} f(e)
$$

so

$$
(f, A') = v_{\text{out}}(f, A) - \sum_{e:A \to v} f(e) + \sum_{e:v \to B'} f(e)
$$

$$
= v_{\text{out}}(f, A) - \sum_{e:v \to A} f(e) + \sum_{e:B' \to v} f(e)
$$

and still

$$
v_{\text{in}}(f, A') = v_{\text{in}}(f, A) - \sum_{e: v \to A} f(e) + \sum_{e: B' \to v} f(e)
$$

This gives

$$
v_{\text{out}}(f, A') - v_{\text{in}}(f, A') = v_{\text{out}}(f, A) - v_{\text{in}}(f, A)
$$

= Val(f).

Maximum flow and minimal cut

Consequences

• for **any flow** *f* and **any cut** *A*, we have

$$
\mathsf{Val}(f) \le c(A).
$$

proof:

$$
\begin{array}{rcl}\n\mathsf{Val}(f) & = & v_{\text{out}}(f, A) - v_{\text{in}}(f, A) \\
& \leq & v_{\text{out}}(f, A) \\
& \leq & c(A)\n\end{array}
$$

- so the **maximal value** of a flow ≤ **minimal capacity** of a cut
- and if we find **any** flow and cut with equality, they are optimal

Max flow?

- we found 4 in the previous lecture
- with $A = \{s\}, c(A) = 4$
- so max flow $=$ min cut $= 4$

last lecture: $r = (\sqrt{5} - 1)/2 \simeq 0.618$, *L* large enough

Max flow?

- easy to get $2L + 1$
- with $A = \{s, a, b\}$, $c(A) = 2L + 1$
- so max flow = min cut = $2L + 1$

Max flow = min cut

Claim

no improving path in $G_f \implies$ can find a cut *A* such that \implies *f* is a max flow $Val(f) = c(A)$

 $(first \implies to do, second \implies already done)$

Consequences:

- **maximal value** of a flow = **minimal capacity** of a cut
- if Ford and Fulkerson's algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson's algorithm always terminates)

Max flow = min cut

Claim

no improving path in $G_f \iff$ can find a cut *A* such that \iff *f* is a max flow $Val(f) = c(A)$

 $(first \implies to do, second \implies already done)$

Consequences:

- **maximal value** of a flow = **minimal capacity** of a cut
- if Ford and Fulkerson's algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson's algorithm always terminates)

Proof

How to build *A*

- take a flow f with no augmenting path in G_f
- let *A* be of vertices **reachable from** *s* in *G^f*

This is a cut:

- s is in A ,
- no path $s \to t$ in G_f so t is in $B = V A$

Left to prove: $Val(f) = c(A)$

Computing the value of *f*

Observation: there is **no edge** $A \rightarrow B$ in G_f

out-going flow:

- all outgoing edges $(A \rightarrow B)$ are saturated in *G*: $f(e) = c(e)$
- gives $v_{\text{out}}(f, A) = c(A)$

in-going flow

- all **incoming edges** $(B \to A)$ have no flow in $G: f(e) = 0$
- gives $v_{\text{in}}(f, A) = 0$

finally: $c(A) = v_{\text{out}}(f, A) - v_{\text{in}}(f, A) = \text{Val}(f)$

Remark 1: Edmonds-Karp (bonus)

A strategy that refines Ford-Fulkerson: choose a **shortest** path (BFS)

Key ideas

- f : old flow, f' : new flow
- distances from *s* in the **residual graphs** cannot decrease: for $e = (u, v)$ in $G_{f'}$,
	- if *e* was not in G_f , $\delta_f(s, v) \leq \delta_{f'}(s, v) + 2$
	- else, $\delta_f(s, v) \leq \delta_{f'}(s, v)$

(takes some work)

- $\delta_f(s, v) \leq n$ so *e* can **appear** in the residual graph at most $n/2$ times
- but then *e* also can **disappear** at most *n/*2 times
- each iteration, at least one edge disappears from *G^f*
- at most 2*m* edges so at most *mn* iterations
- runtime $O(m^2n)$

Remark 2: thick paths (bonus)

A slightly weaker strategy to refine Ford-Fulkerson: choose a path that **maximizes the bottleneck** capacity *x*.

Key ideas

- finding the thickest path: similar to Dijkstra
	- Dijkstra minimizes P *^e*∈*^γ w*(*e*)
	- here we maximize $\min_{e \in \gamma} c(e)$
- in G_f , there is a path with $x \geq (M \text{Val}(f))/2m$, $M = \text{max flow so}$

$$
\mathsf{Val}(f') \ge \mathsf{Val}(f) + (M - \mathsf{Val}(f))/2m
$$

(takes some work)

- if capacities are integers, implies we do $O(m \log(M))$ iterations
- total $O(m^2 \log(n) \log(M))$

Remark 3: maximal flow from linear programming (bonus)

Equations for the max flow problem:

1. create a variable $f_{u,v}$ for each edge (u, v) and the linear constraints

$$
f_{u,v} \ge 0, \quad f_{u,v} \le c(u,v), \quad \sum_{(u,v) \text{ edge}} f_{u,v} = \sum_{(v,w) \text{ edge}} f_{v,w}
$$

2. maximize

$$
\sum_{(s,v)\text{ edge}} f_{s,v}.
$$

- this is an instance of a **linear programming** problem
- max flow \prime min cut special case of **linear programming duality** (max something $=$ min something else)

(takes work)